CIL

EMU CRITICAL ITEMS LIST

5/30/2002 SUPERSEDES 12/31/2001

Page 1 Date: 3/27/2002

_ _ _ _ _ _ _ _ _ _

IAME		FAILURE MODE &		
27 N 2TY	CRIT	CAUSES	FAILURE EFFECT	RATIONALE FOR ACCEPTANCE
		104FM22		
RIEF ASSEMBLY	1/1	External gas	END ITEM:	A. Design -
TEM 104	1/1	leakage beyond	Suit gas	The bladder assembly is formed from a series of patterned pieces of urethane
		SOP makeup	leakage to	coated nylon oxford fabric, and seamed together by dielectric heat, to which
0104-811071-04 (1)		capability	ambient.	flanges are also heat sealed. The bladder seams (and boot flange for Non- Enhanced) are reinforced by heat-sealed overtaping to enhance structural
		Separation of seam in	GFE INTERFACE:	integrity. The waist bearing flange is overtaped using adhesive bonding for the Non-Enhanced Assembly. For the enhanced assembly, the waist bearing flange is
		bladder.	Depletion of	heat-sealed to the bladder; the bladder seams and flanges are reinforced by heat
		Defective	primary O2	sealed overtaping to enhance structural integrity. The solution coated bladder
		material: abrasion or	supply and SOP. Rapid	is protected internally in known areas of high wear, by an additional heat sealed abrasion layer. Externally, the bladder is protected by the restraint
		puncture.	depressurizatio n of SSA	fabric and TMG layers. As a component of the lower torso (non-enhanced), or brief (enhanced), the bladder is entirely supported by the restraint assembly.
			beyond SOP	The bladder is thereby not subjected to any of the loads (man or pressure
			makeup capability.	induced) experienced by the lower torso restraint.
			MISSION:	Seam design creates a structure at least as strong as the base bladder. Thus, seam separation is precluded.
			Loss of EVA.	seam separation is precided.
				There are two types of bladder fabric. One is constructed of a base nylon
			CREW/VEHICLE:	fabric with a solution coated urethane. The other is constructed of the same
			Loss of	base nylon with a urethane laminate coating.
			crewman.	The following paragraph applies to the solution coated nylon. Testing has shown that the bladder fabric minimum tensile strength is 105 lbs/inch (fill) and 140 lbs/inch (warp). The tearing strength is 3.5 lbs/inch in fill and 6.0 lbs/inch
			TIME TO EFFECT	in warp. Nominally, hoop load is absorbed by the bias direction of the bladder
			/ACTIONS:	fabric. However, the safety factors are based on the fabric yarns (fill yarns)
			Seconds.	which have the least strength. Based on a predicted hoop load of 35.2 lbs/inch
			TIME	at 4.4 psid (normal operating pressure), the minimum safety factor for hoop stress is 3.0. At 5.5 psid (max failure pressure) and at 8.8 psid (max BTA
			AVAILABLE:	operating pressure) the safety factors are 2.4 and 1.5 respectively. The S/AD
			N/A	minimum safety factor for softgoods at 4.4 psid is 2.0. At both 5.5 and 8.8
			TIME REQUIRED:	psid, the S/AD minimum safety factor is 1.5. Testing has demonstrated that the breaking strength of the bladder seams meets or exceeds that of the bladder
			N/A	fabric.
			REDUNDANCY	The following paragraph applies to the laminate coated nylon. Testing has shown
			SCREENS: A-N/A	that the bladder fabric minimum tensile strength is 180 lbs/inch in the fill direction and 170 lbs/inch in the fill direction. The tearing strength is 3.5
			B-N/A	lbs/inch minimum in both directions. Based on a predicted hoop load of 35.2
			C-N/A	lbs/inch, the minimum safety factor for hoop stress is 4.8 against a S/AD desig
				minimum ultimate safety factor of 2.0 at 4.4 psid (normal operating pressure).
				At 5.5 psid (max failure pressure) and at 8.8 psid (max BTA operating pressure) the safety factors are 3.8 and 2.4, respectively.
				The presence of abrasion layers, restraint and TMG, along with the physical properties of the bladder, make inadvertent puncture or abrasion unlikely.
				B. Test -
				Acceptance: As required by the Table of Operations (T/O) for the fabrication of the bladder
				assembly, heat seal samples and adhesive seam samples (flange overtape) are

CIL EMU CRITICAL	ITEMS LIST		5/30/2002 SU	PERSEDES 12/31/2001	Page 2 Date: 3/27/2002
NAME P/N QTY	CRIT	FAILURE MODE & CAUSES	FAILURE EFFECT	RATIONALE FOR ACCEPTANCE	
		104FM22		the roll as the material being heat sea produced and tested for each bladder as	the start of each work shift and tool change, machine setting change lot change. tion tooling and from the same portion of led in production. Peel test samples are
				and subjected to a leakage test at 4.3 psig to verify leakage less than 10 8.0 scc/min for enhanced.	.0 scc/min for non-enhanced and less than
				<pre>PDA: The following tests are conducted at th Document 0111-710112: 1. Initial leak test at 4.3 +/- 0.1 ps scc/min. 2. Proof pressure test at 8.0 + 0.2 - 3. Post-proof pressure leak test at 4. than 46.5 scc/min.</pre>	ig to verify leakage less than 46.5 0.0 psig to verify no structural damage.
					rdance with ILC Document 0111-710112: to verify leakage less than 8.0 scc/min. 0.0 psig to verify no structural damage. 3 +/- 0.1 psig to verify leakage less
				Certification - The brief bladder assembly was successf operational life (Ref. ILC Report 0111- requirements of significance to the bri- during certification:	711330). The following usage, reflecting
				Requirement S/AD Actual	
				Hip Abd/Add 458 1200 Hip Flex/Ext 1524 3200 Waist Flex/Ext 1234 2800 Waist Rotation 2466 6000 Don/Doff 98 400 Pressure Hours 458 916 The brief bladder assembly was successf 13.2 psid during SSA certification test	ully subjected to an ultimate pressure of
				is 1.5 times maximum BTA operating pres	sure based on 8.8 psid. rethane) was successfully tested (manned)

CIL

EMU CRITICAL ITEMS LIST

5/30/2002 SUPERSEDES 12/31/2001

Page 3

Date: 3/27/2002

NAME P/N QTY	CRIT	FAILURE MODE & CAUSES	FAILURE EFFECT	RATIONALE FOR ACCEPTANCE
		104FM22		
				Report 0111-712436). The following usage, reflecting requirements of significance to the bladder assembly, was documented during certification:

Requirement	S/AD	Actual
Hip Add/Abd	458	1200
Hip Flex/Ext	1524	3200
Waist Flex/Ext	1234	2800
Waist Rotation	2466	5200
Don/Doff	98	205
Pressure Hours	458	983

The bladder assembly was successfully subjected to an ultimate pressure of 13.2 psid during SSA certification testing (Ref. ILC Report 0111-712436). This is 1.5 times the maximum BTA operating pressure based on 8.8 psid.

C. Inspection -

Components and material manufactured to ILC requirements at an approved supplier are documented from procurement through shipping by the supplier. ILC incoming receiving inspection verifies that the materials received are as identified in the procurement documents, that no damage has occurred during shipment and that supplier certifications have been received which provide traceability information.

Where applicable, the following MIP's are performed during the LTA manufacturing process to assure that the failure causes are precluded from the fabricated item: 1. Visual inspection of abrasion layer heat seal for delamination.

2. Visual inspection of bladder, before overtaping and flange installation, to classification of defects criteria.

3. Visual inspection of heat seal width.

4. Visual inspection of reinforcement tapes and flanges for positioning and bond acceptability.

5. Verification of seam acceptability test results.

During PDA, the following inspection points are performed at the lower torso assembly level in accordance with ILC Document 0111-710112:

- 1. Visual inspection for material degradation.
- 2. Visual inspection for structural damage following proof pressure test.

When delivered as a separable component of the LTA, the following inspection points are conducted at the Trouser Assembly level in accordance with ILC Document 0111-710112:

- 1. Visual inspection for material degradation.
- 2. Visual inspection for structural damage following proof pressure test.

D. Failure History -

B-EMU-104-A061 (3/22/99) -

Visual defect in coating of bladder in the brief flange area. Defect is a surface condition that does not extend through to the base fabric. Root cause not identified, but class II ECO 992-0309 generated to add specific text to the current visual inspection to assist in identifying these type of conditions. Pre-flight visual inspections and leakage tests per FEMU-R-001 exist to identify such anomalies.

CIL

EMU CRITICAL ITEMS LIST

5/30/2002 SUPERSEDES 12/31/2001

Page 4

Date: 3/27/2002

NAME P/N QTY	CRIT	FAILURE MODE & CAUSES	FAILURE EFFECT	RATIONALE FOR ACCEPTANCE

104FM22

B-EMU-104-T008 (3/22/99)

Abraded hole in restraint material (NBL unit) on the outboard side of the crewmember's left leg caused by contact against the top of the bracket on the thigh side of the brief. This condition has only occurred in NBL gear. Studies have determined that restraint fabric wears significantly faster when subjected to abrasion in water and this failure condition should not occur in class I or Class II briefs within their certified life. Pre-flight visual inspections and leakage tests per FEMU-R-001 exist to identify such anomalies.

B-EMU-104-T009 (4/2/99)-

"T" pin found sticking out of the rear left upper leg area of the brief between the Mylar and Ortho layer of the (class III) TMG. Following manufacture and repair/rework involving exposed TMG layers, TMG's are X-rayed at ILC for foreign objects. Per CCBD H6972, class I/II and class IIIW sections of FEMU-R-001 have been revised to specify post-repair screening for foreign metallic objects. Additionally, pre-flight inspections per FEMU-R-001 exist to identify such anomalies.

E. Ground Turnaround -Tested for non-EET processing per FEMU-R-001, Pre-Flight LTA Leakage Test. None for EET processing.

Additionally, every 4 years or 229 hours of manned pressurized time the lower torso restraint and bladder assembly is removed from the LTA and subjected to complete visual inspection for material degradation or damage.

F. Operational Use -1. Crew Response -EVA : When CWS data confirms SOP activation, abort EVA. 2. Special Training -Standard training covers this failure mode. 3. Operational Consideration -EVA checklist procedures verify hardware integrity and systems operational status prior to EVA. Flight rules define go/no-go criteria related to EMU pressure integrity.

EXTRAVEHICULAR MOBILITY UNIT

SYSTEMS SAFETY REVIEW PANEL REVIEW

FOR THE

I-104 LOWER TORSO ASSEMBLY (LTA)

CRITICAL ITEM LIST (CIL)

EMU CONTRACT NO. NAS 9-97150

Approved by: WASA - SSA/SSMA

M. Snyler HS - Reliability

<u>R. Munford</u> 4/24/02 HS - Engineering Manager

5/2/02 12 N/AS/ACCERT

5.29.02

h 5-30-02

6/04/02 ASAU Crew

1/3/02 ASAM Program Manager