CIL

EMU CRITICAL ITEMS LIST

5/30/2002 SUPERSEDES 12/31/2001

Page 1

Date: 3/27/2002

NAME		FAILURE		
P/N		MODE &		
QTY	CRIT	CAUSES	FAILURE EFFECT	RATIONALE FOR ACCEPTANCE
		105FM01		
HELMET ASSEMBLY.	1/1	External das	END TTEM:	A. Design -
ITEM 105 A/L 9672-03 (1)	1/1	leakage beyond SOP makeup	Suit gas leakage to ambient.	The helmet bubble is mechanically locked to the helmet neck ring via a bayone configuration machined into both the helmet neck ring and helmet bubble. The
		capability.		machined groove in the bubble is 0.130 + 0.005-0.000 and the matching machined feature of the neck ring is 0.125 + 0.00-0.005. The gap created by the machining tolerance (.005 to .015) is filled with polyurethane adhesive to seal
		Bubble cracked, or separated from neck ring. Chemical attack by on- board chemicals or fuels (hydrazine). Defective material, bonding. External impact on CPV assembly. Cracked neck ring.	GFE INTERFACE: Depletion of primary O2	the helmet bubble to the neck ring interface. The mechanical bayonet fitting/groove locking feature locks the helmet to the neck ring against rotational and axial (plug) loading. The helmet bubble is therefore in shear
			supply and SOP. Rapid depressurizatio	and the adhesive serves as a sealant only. Defective bayonet fitting/grooves are precluded by adherence to specified engineering dimensions and tolerances defined by drawing/specification requirements. This same helmet configuration
			n of SSA beyond SOP	was utilized during the Apollo program.
			makeup capability. MISSION: Abort EVA	The helmet bubble is hydro-formed from polycarbonate sheet stock which is one of the high strength engineering thermoplastics. Defects are easily detected
				visually in this clear sheet stock both before and after forming. The Helmet neck ring is made from 7075-T73 aluminum.
				The only portion of the Helmet Assembly which is not protected by the EVVA (Extravehicular Visor Assembly) is the CPV (Combination Purge Valve). The
			CREW/VEHICLE: Loss of	geometry of the CPV attachment is such that it is not possible to apply a high external load to it, except perpendicular to the outer face of the CPV. Any
			Crewman.	deflects. Non-perpendicular bench testing of a pressurized Helmet (without EVVA) on a tensile test machine showed 1 1/2" deflection of the CPV position at 128
			TIME TO EFFECT /ACTIONS: Seconds.	lbs. applied load. This was the maximum load which could be applied before the load slipped off. There is only .040 inch clearance between the CPV and the EVVA, so the EVVA would have absorbed a major portion of the load, and
			TIME	distributed it. A leak check after the bench testing showed no Helmet leakage.
			AVAILABLE: N/A	The helmet is protected from direct impingement of hydrazine by the polycarbonate EVVA Shell and Protective Visor. If deployed, the polysulfone Sun Visor provides an additional barrier for the front of the helmet since it.
			TIME REQUIRED: N/A	resists hydrazine attack. The TMG on the EVVA Shell also absorbs some hydrazine before soaking through.
			REDUNDANCY SCREENS: A-N/A B-N/A C-N/A	The Apollo configuration helmet, which had an identical neck ring and shell as shuttle, was subjected to burst testing at ILC/JSC. Post test summary S81-16 shows that an attempt to burst test a helmet with water pressure saw leakage
				occur at the feed port (now CPV) opening at 33 psi. At 58 psi, the test was discontinued with no visible damage to neck ring, shell or their interfaces. This compares to the max operating pressure of 5.3 psi.
				B. Test -
				The helmet assembly is subjected to testing per ATP 9672 at airlock with ILC verification. The assembly is pressurized in the test fixture to 8.0 (+0.2 - 0.0) psig for a 5 minute duration and leakage tested to 4.3 +/- 0.1 psig.
				PDA:
				The following tests are conducted on the Helmet Assembly in accordance with ILC Document 0111-70028J:

CIL

EMU CRITICAL ITEMS LIST

5/30/2002 SUPERSEDES 12/31/2001

Page 2

Date: 3/27/2002

							, ,	
NAME		FAILURE						
P/N	OD T T	MODE &						
Q.1. X	CRIT	CAUSES	FAILURE EFFECT	RATIONALE FOR ACCEPT	TANCE			
		105FM01						
				1. Initial leak tes scc/min.	t at 4.3 +/	- 0.1 psig to ver	ify leakage less than 5.0	
				 Proof pressure test at 8.0 (+0.2 - 0.0) psig for 5 minutes to veri structural damage. 			for 5 minutes to verify no	
				3. Post-proof press than 5.0 scc/min.	ure leak te	st at 4.3 +/- 0.1	. psig to verify leakage less	
				Certification:				
				An Apollo helmet was successfully tested during SSA certification to dupl operational life. (Ref. ILC Engineering Memorandum 83-1083 and EM 98-00(SSA certification to duplicat dum 83-1083 and EM 98-0008).	е
				The following usage, reflecting requirements of significance to the helmet was documented during certification.			s	
				Requirement	S/AD	Actual		
				Activation Cycles	300	1080		
				Pressure Hours	458	1162		
				Pressure Cycles	300	1832		
				The helmet was successfully subjected to an ultimate pressure of 10. during SSA certification testing. Ref. ILC Document 0111-70027. Thi times normal maximum operating pressure based on 5.3 psi. Recertification to 5.5 psi was by test and analysis (ref. ILC EM 84- Helmet was successfully tested to verify its acceptability for 8.0 p NASA Report CSD-SH-240). Testing included 50 pressure cycles and 14 pressurized time @ 8.8 psig and 520 pressure cycles at 13.2 psig. Te included a burst presure check at 23.8 + .2 psig followed by a leaka which disclosed no leaks. Maximum shuttle operating pressure is 5.3 Maximum failure pressure is 5.5.			mate pressure of 10.6 psig ment 0111-70027. This is two a 5.3 psi. vsis (ref. ILC EM 84-1108). reptability for 8.0 psi use (r ressure cycles and 1400 hours cles at 13.2 psig. Tests also g followed by a leakage check fing pressure is 5.3 psi.	ef.
				C. Inspection - Components and mater are documented from p receiving inspection the procurement docum supplier certification	ial manufac procurement verifies t ments, that ons have be	tured to ILC requ through shipping hat the materials no damage has oc en received which	direments at an approved suppl by the supplier. ILC incomi received are as identified i curred during shipment and th provides traceability	ier ng n at
				The following MIP's of process to assure the following for the fol	are perform e failure c eakage duri n for damag hesive bond	ed during the hel auses are preclud ng leakage tests. e after proof and ing.	met assembly manufacturing led from the fabricated item: l leakage tests.	
				During PDA, the follo level in accordance 1. Visual inspection 2. Verification of no structural damage	owing inspe with ILC Do n for damag leakage les following	ction points are cument 0111-70028 e prior to testin s than 5.0 scc/mi proof pressure te	performed at the Helmet Assem J: ug. .n during initial leakage test .st, and leakage less than 5.0	bly s;

<u> </u>	

EMU ODIMICAL IMENO LION

_ __ _

Page 3

_ __ __ __ __

EMU CRITICAL ITEMS LIST			5/30/2002 SUE	PERSEDES 12/31/2001	Date: 3/27/2002
NAME P/N QTY	CRIT	FAILURE MODE & CAUSES	FAILURE EFFECT	RATIONALE FOR ACCEPTANCE	
		105FM01			
				scc/min during post-proof pressure leak test.	
				D. Failure History - None.	
				E. Ground Turnaround - Tested for non-EET processing per FEMU-R-001, Pre-Flight leakage test. None EET processing. Every four years the helmet is demated from the EVVA and CPV and is visually inspected for material degradation or damage (particularly a CPV and EVVA interface attachment areas).	
				F. Operational Use - 1. Crew Response - EVA : When CWS data confirms SOP activation, abort EVA.	
				2. Special Training - Standard training covers this failure mode.	
				3. Operational Consideration - EVA checklist procedures verify hardware integrity and syst status prior to EVA. Flight rules define go/no-go criteria pressure regulation and pressure integrity.	ems operational related to EMU

EXTRAVEHICULAR MOBILITY UNIT

SYSTEMS SAFETY REVIEW PANEL REVIEW

FOR THE

I-105 HELMET ASSEMBLY

CRITICAL ITEM LIST (CIL)

EMU CONTRACT NO. NAS 9-97150

Prepared by: _______ Januar ______ 3/27/02_ Approved by: _______ Approved by: ________ NASA ______ SSA/SSM

13Marto

M. Smyler HS - Reliability

Ala Ployel for Rom. HS - Engineering Manager

14 Blanco 5/14/0

S & MA

<u>slirlar</u> <u>3/23/02</u> MASA-MODS

6/04/02 NASA - Crew

-6/04/02 NASA/ Program Manager