

41st Joint Propulsion Conference and Exhibit

> Tuscon, Arizona July 13-14, 2005

> > Sub-Topic: Liquid Rocket Engine Testing

> > > AIAA Short Course on Liquid Rocket Engines

Dr. Shamim Rahman

NASA John C. Stennis Space Center, MS

- Objectives and Motivation for Testing
 - Technology, RDT&E, Evolutionary
- Representative LRE Test Campaigns
 - Apollo, Shuttle, ELV Propulsion
- Overview of Test Facilities for Liquid Rocket Engines
 Boost, Upper Stage (Sea-level and Altitude)
- Statistics (historical) of Liquid Rocket Engine Testing
 LOX/LH, LOX/RP, Other development
- Test Project Enablers: Engineering Tools, Operations, Processes, Infrastructure

Continued on Next Page ...

Section Outline (cont.)

AIAA LRE Course =

Continued from Previous Page ...

- Non-NASA Test Capability
 - National Rocket Propulsion Test Alliance
 - Commercial Test Sites
 - University Test Sites
- Summary
- BACKUP MATERIAL

OBJECTIVES & MOTIVATION FOR LRE TESTING

Key Terms

- *Development* testing is required to achieve design maturity, demonstrate capability, and to reduce risk to the qualification program. Development tests are conducted, as required, to:
 - Validate new design concepts or the application of proven concepts and techniques to a new configuration,
 - Assist in the evolution of designs from the conceptual phase to the operational phase,
 - Validate design changes,
 - Reduce the risk involved in committing designs to the fabrication of qualification and flight hardware,
 - Develop and validate qualification and acceptance test procedures,
 - Investigate problems or concerns that arise after successful qualification,
 - An objective of development testing is to identify problems early in their design evolution so that any required corrective actions can be taken prior to starting formal qualification testing.
- **Qualification** tests (also commonly known as *certification* tests) are conducted to:
 - Demonstrate that the design, manufacturing process, and acceptance program produce hardware/software that meet specification requirements with adequate margin to accommodate multiple rework and test cycles,
 - In addition, the qualification tests should validate the planned acceptance program, including test techniques, procedures, equipment, instrumentation, and software.

Generally qualification follows completion of the development test program.

- *Acceptance* tests are conducted to demonstrate the acceptability of each deliverable item to meet performance specification and demonstrate error-free workmanship in manufacturing. Acceptance testing is intended to:
 - Stress screen items to precipitate incipient failures due to latent defects in parts, processes, materials, and workmanship,
 - Component acceptance testing at the bench level serves to reduce risk for engine acceptance testing, but it may not simulate the engine environments adequately.
 - Many components require engine hot fire to adequately reduce flight risk. (An engine LRU is a component that may be removed and replaced by a new unit, without requiring reacceptance test firing of the engine with the new unit. If the unit being replaced was included in an engine acceptance test firing as part of its acceptance test, then the replacement unit either should be subjected to such a test on an engine, or should undergo equivalent unit-level acceptance testing).

Objectives of Liquid Propulsion Testing

AIAA LRE Course =

Some examples of each are listed

- Component Development
 - Combustion devices (turbomachinery, chambers, ignitors), e.g. RS-84
 - Advanced technology demonstrators
- Prototype Engine Development
 - J-2*S*, XRS-2200, RL-60, MB-60
- Flight Engine Qualification, Certification
 - J-2, F-1, SSME, RS-68, RL-10, etc.
- Flight Engine Acceptance
 - RS-68, SSME
- Major Engine Upgrades
 - SSME Block Upgrades
- Re-development and Re-Use Potential
 - LR-89 thrust chamber

Typical Sequence of Testing

• An On-going process of risk reduction (components, engines, stages)

Historical Full Scale Development Cost Distribution

History shows major cost elements are consistent

REDT-DF6/93-02/29-

George, D.; "Chemical Propulsion: How To Make It Low Cost," presented at Highly Reusable Space Transportation Meeting, 25-27 July 1995.

Survey of LOX/RP and LOX/LH Engine Development Programs

AIAA LRE Course =

- Emdee, J., "A Survey of Development Test Programs for Hydrogen Oxygen Rocket Engines," AIAA Paper No. 2001-0749.
- Emdee, J., "A Survey of Development Test Programs for LOX/Kerosene Liquid Rocket Engines," AIAA Paper No. 2001-3985.

Effect on Engine Flight Success Rate

- Emdee, J., "A Survey of Development Test Programs for Hydrogen Oxygen Rocket Engines," AIAA Paper No. 2001-0749.
- Emdee, J., "A Survey of Development Test Programs for LOX/Kerosene Liquid Rocket Engines," AIAA Paper No. 2001-3985. 10

REPRESENTATIVE TEST CAMPAIGNS

Test Facility Challenges – Components, Engines, Stages

- Stage/Vehicle Testing
 - Complex
 - Self Contained
 - **Transfer Systems**
- **Engine Testing**
 - More Complexity
 - Engine Self Contained
 - Propellant Systems on Stand
 - **Transfer Systems**
- Component Testing
 - More Complexity
 - **Facility Emulates Engine Parameters**
 - **High Pressures**
 - **High Flowrates**
 - **Extremely Fast Controls**

Space Shuttle Vehicle (External Tank)

AIAA LRE Course

Space Shuttle Main Engine

Turbopump Component

A Survey of Test Engine Test Campaigns

AIAA LRE Course =

	<u>SSME</u> (Boost)	<u>F-1</u> (Boost)	RS-68 (Boost)	<u>J-2</u> (U/S)	<u>RL-10A-1</u> (U/S)	<u>LMDE</u> (Lander)
Thrust	500 Klbf	1.5 Mlbf	700 Klbf	250 Klbf	15 Klbf	10 Klbf
Hot-Fire Test Seconds <u>Prior to</u> First Flight	110,000 s	250,000 s	**11,000 s (i/w)	120,000 s	71,000 s	149,000 s
Hot-Fire Test Seconds <u>After</u> First Flight	~750,000 s* (& counting)	30,000 s	6,810 s	in-work (i/w)	Upgraded to RL-10A-3	N/A
Hot-Fire Tests Prior to First Flight	726	2805	188	1730	707	2809
Years of Devt.	9	8	5 - 6	6	3	5
Missions Flown	113	~15	3	~15	i/w	6 (Apollo 11,12,14-17)
Vehicle	Shuttle	Saturn V	Delta IV	Saturn V	Various	Saturn V

*SSME Flight Seconds (~150,000 s) not counted

**RS-68 Pre-flight Seconds (in-work): ~19500 s total (~11000 s at SSC)

For many of the above: testing was performed at a variety of locations

• Emdee, J., "A Survey of Development Test Programs for Hydrogen Oxygen Rocket Engines," AIAA Paper No. 2001-0749.

• Emdee, J., "A Survey of Development Test Programs for LOX/Kerosene Liquid Rocket Engines," AIAA Paper No. 2001-3985.

• Elverum, G. et al., "The Descent Engine for the Lunar Module," AIAA Paper No. 67-521.

Testing to Enhance Reliability (LOX/LH)

AIAA LRE Course

Total Dovelopment and

Booster Engines

		Engine			Feasibili	ity	[inclue	Developm ding stag	ent e firings	Q includi	ualifica	ntion ge firings	Total I C includ	Developr Qualificat	ment and tion e firings	
Designati on	Time from Program Start to Qualification	Life (firings / secs)	Burn Time (secs)	Engines	Firings	Seconds	Engines	Firings	Seconds	Engines	Firings	Seconds	Engines	Firings	Seconds	Flight Success Rate
LE-7	11 years ('83'94)	- / 1720	350	2	-	-	9	-	-	5	-	-	14	282	15,639	88.0%
RD-0120	11 years ('76-'87)	4 / 2000	460	/ -	-	-	-	-	-	3	-	- \	90	793	163,000	100.0%
SSME [†]	9 years ('72-'81)	55 / 27,000	520 /	0	0	0	16+	627	77,135	4+	99	33,118	20+	726	110,253	99.7%
Vulcain	10 years ('85-'95)	20 / 6000	575	0	0	0	12+	-	-	2	-	-	14+	278	87,000	100.0%

SSME includes production up to 1st flight

Upper Stage Engines

Lengine Designation Life Program Start to Qualification Life (firings / secs) Burn (firings / (secs) sec u sec u			Finaliza			Feasibili	ity	C incluc)evelopm ling stage	ent e firings	C includ	Qualificat ling stag	tion le firings	incluc	Qualificat	ion e firings	
HM7A 6 yrs ('73-'79) - 570 -	Designation	Time from Program Start to Qualification	Life (firings / secs)	Burn Time (secs)	Engines	Firings	Seconds	Engines	Firings	Seconds	Engines	Firings	Seconds	Engines	Firings	Seconds	Flight Success Rate
HM7B 3 yrs (80-'83) - 745 - - - - - - - 96.65 J-2 6 yrs ('60-'66) 30 / 3750 450 - - - 36 1,700 116,000 2 30 3,807 38 1,730 120,000 97.75 J-2S* 4 yrs ('65-'69) 30 / 3750 450 1 - 10,756 6 273 30,858 Development only Development only Development only N/A LE-5 8 yrs ('77-'85) - 600 3 54 2,587 5 188 13,414 3 134 14,292 8 322 27,706 100.0 LE-5A 5 yrs ('86-'91) 14 / 2920 535 0 0 0 2 66 6,918 2 52 9,238 4 118 16,156 86.09 LE-5B 4 yrs ('95-'99) 16 / 2236 534 1 8 237 1 23 1,077 4 79 11,963 5 102 13,040 N/A	HM7A	6 yrs ('73-'79)	-	570	-	-	-	-	-	-	-	-	-	11	-	25,000	90.0%
J-2 6 yrs (60-'66) 30 / 3750 450 - - - 36 1,700 116,000 2 30 3,807 38 1,730 120,000 97.75 J-2S* 4 yrs (65-'69) 30 / 3750 450 1 - 10,756 6 273 30,858 Development only Development only N/A LE-5 8 yrs ('77-'85) - 600 3 54 2,587 5 188 13,414 3 134 14,292 8 322 27,706 100.0 LE-5A 5 yrs ('86-'91) 14 / 2920 535 0 0 0 2 66 6,918 2 52 9,238 4 118 16,156 86.09 LE-5B 4 yrs ('95-'99) 16 / 2236 534 1 8 237 1 23 1,077 4 79 11,963 5 102 13,040 N/A RL10A-1 3 yrs ('58-'61) - 380 - - - >230 - - - >230 707 71,036	HM7B	3 yrs ('80-'83)	-	745	-	-	-	-	-	-	-	-	-	10	-	-	96.6%
J-2S* 4 yrs (65-'69) 30 / 3750 450 1 - 10,756 6 273 30,858 Development only Development only N/A LE-5 8 yrs ('77-'85) - 600 3 54 2,587 5 188 13,414 3 134 14,292 8 322 27,706 100.0 LE-5A 5 yrs ('86-'91) 14 / 2920 535 0 0 0 2 66 6,918 2 52 9,238 4 118 16,156 86.09 LE-5B 4 yrs ('95-'99) 16 / 2236 534 1 8 237 1 23 1,077 4 79 11,963 5 102 13,040 N/A RL10A-1 3 yrs ('58-'61) - 380 - - - >230 707 71,036 N/A RL10A-3-3A 1 yr ('80-'81) 23 / 5800 600 0 0 0 4+ 214 18,881 1 24 5,864 5+ 238 24,745 97.69 RL10A-4 3 yr	J-2	6 yrs ('60-'66)	30 / 3750	450	-	-	-	36	1,700	116,000	2	30	3,807	38	1,730	120,000	97.7%
LE-5 8 yrs ('77-'85) - 600 3 54 2,587 5 188 13,414 3 134 14,292 8 322 27,706 100.0 LE-5A 5 yrs ('86-'91) 14 / 2920 535 0 0 0 2 66 6,918 2 52 9,238 4 118 16,156 86.09 LE-5B 4 yrs ('95-'99) 16 / 2236 534 1 8 237 1 23 1,077 4 79 11,963 5 102 13,040 N/A RL10A-1 3 yrs ('58-'61) - 380 - - - >230 - - - >230 707 71,036 N/A RL10A-3-3A 1 yr ('80-'81) 23 / 5800 600 0 0 0 4+ 214 18,881 1 24 5,864 5+ 238 24,745 97.69 RL10A-4 3 yrs ('88-'91) 27 / 4000 400 3+ 51 8,321 2+ 73 15,055 1 38 5,265 <t< td=""><td>J-2S*</td><td>4 yrs ('65-'69)</td><td>30 / 3750</td><td>450</td><td>1</td><td>-</td><td>10,756</td><td>6</td><td>273</td><td>30,858</td><td>Dev</td><td>velopmer</td><td>nt only</td><td>De</td><td>velopmen</td><td>t only</td><td>N/A</td></t<>	J-2S*	4 yrs ('65-'69)	30 / 3750	450	1	-	10,756	6	273	30,858	Dev	velopmer	nt only	De	velopmen	t only	N/A
LE-5A 5 yrs (*86-'91) 14 / 2920 535 0 0 0 2 66 6,918 2 52 9,238 4 118 16,156 86.05 LE-5B 4 yrs (*95-'99) 16 / 2236 534 1 8 237 1 23 1,077 4 79 11,963 5 102 13,040 N/A RL10A-1 3 yrs (*58-'61) - 380 - - - >230 - - - >230 707 71,036 N/A RL10A-3-3A 1 yr (*80-'81) 23 / 5800 600 0 0 0 4+ 214 18,881 1 24 5,864 5+ 238 24,745 97.69 RL10A-4 3 yrs (*88-'91) 27 / 4000 400 3+ 51 8,321 2+ 73 15,055 1 38 5,265 3+ 111 20,320 100.00 RL10A-4 3 yrs (*95-'98) 15 / 3500 700 1 19 1,701 3+ 125 11,605 1 30 4,044 </td <td>LE-5</td> <td>8 yrs ('77-'85)</td> <td>-</td> <td>600</td> <td>3</td> <td>54</td> <td>2,587</td> <td>5</td> <td>188</td> <td>13,414</td> <td>3</td> <td>134</td> <td>14,292</td> <td>8</td> <td>322</td> <td>27,706</td> <td>100.0%</td>	LE-5	8 yrs ('77-'85)	-	600	3	54	2,587	5	188	13,414	3	134	14,292	8	322	27,706	100.0%
LE-5B 4 yrs ('95-'99) 16 / 2236 534 1 8 237 1 23 1,077 4 79 11,963 5 102 13,040 N/A RL10A-1 3 yrs ('58-'61) - 380 - - - >230 - - - - >230 707 71,036 N/A RL10A-3-3A 1 yr ('80-'81) 23 / 5800 600 0 0 0 4 14 18,881 1 24 5,864 5+ 238 24,745 97.69 RL10A-4 3 yrs ('88-'91) 27 / 4000 400 3+ 51 8,321 2+ 73 15,055 1 38 5,265 3+ 111 20,320 100.0 RL10A-4-1 1 yr ('94) 28 / 3480 400 0 0 0 1 5 2,068 1 42 3,683 2 47 5,751 100.0 RL10A-2 3 yrs ('95-'98) 15 / 3500 700 1 119 1,701 3+ 125 11,605 1 30	LE-5A	5 yrs ('86-'91)	14 / 2920	535	0	0	0	2	66	6,918	2	52	9,238	4	118	16,156	86.0%
RL10A-1 3 yrs ('58-'61) - 380 - - >230 - - >230 707 71,036 N/A RL10A-3-3A 1 yr ('80-'81) 23 / 5800 600 0 0 0 4+ 214 18,881 1 24 5,864 5+ 238 24,745 97.69 RL10A-4 3 yrs ('88-'91) 27 / 4000 400 3+ 51 8,321 2+ 73 15,055 1 38 5,265 3+ 111 20,320 100.0 RL10A-4-1 1 yr ('94) 28 / 3480 400 0 0 0 1 5 2,068 1 42 3,683 2 47 5,751 100.0 RL10B-2 3 yrs ('95-'98) 15 / 3500 700 1 119 1,701 3+ 125 11,605 1 30 4,044 4 155 15,649 50.09	LE-5B	4 yrs ('95-'99)	16 / 2236	534	1	8	237	1	23	1,077	4	79	11,963	5	102	13,040	N/A
RL10A-3-3A 1 yr ('80-'81) 23 / 5800 600 0 0 0 4+ 214 18,881 1 24 5,864 5+ 238 24,745 97.65 RL10A-4 3 yrs ('88-'91) 27 / 4000 400 3+ 51 8,321 2+ 73 15,055 1 38 5,265 3+ 111 20,320 100.0 RL10A-4-1 1 yr ('94) 28 / 3480 400 0 0 0 1 5 2,068 1 42 3,683 2 47 5,751 100.0 RL10B-2 3 yrs ('95-'98) 15 / 3500 700 1 119 1,701 3+ 125 11,605 1 30 4,044 4 155 15,649 50.09	RL10A-1	3 yrs ('58-'61)	-	380	-	-	-	>230	-	-	-	-	-	>230	707	71,036	N/A
RL10A-4 3 yrs ('88-'91) 27 / 4000 400 3+ 51 8,321 2+ 73 15,055 1 38 5,265 3+ 111 20,320 100.0 RL10A-4-1 1 yr ('94) 28 / 3480 400 0 0 0 1 5 2,068 1 42 3,683 2 47 5,751 100.0 RL10B-2 3 yrs ('95-'98) 15 / 3500 700 1 119 1,701 3+ 125 11,605 1 30 4,044 4 155 15,649 50.09	RL10A-3-3A	1 yr ('80-'81)	23 / 5800	600	0	0	0	4+	214	18,881	1	24	5,864	5+	238	24,745	97.6%
RL10A-4-1 1 yr ('94) 28 / 3480 400 0 0 1 5 2,068 1 42 3,683 2 47 5,751 100.0 RL10B-2 3 yrs ('95-'98) 15 / 3500 700 1 119 1,701 3+ 125 11,605 1 30 4,044 4 155 15,649 50.09	RL10A-4	3 yrs ('88-'91)	27 / 4000	400	3+	51	8,321	2+	73	15,055	1	38	5,265	3+	111	20,320	100.0%
RL10B-2 3 yrs ('95-'98) 15 / 3500 700 1 119 1,701 3+ 125 11,605 1 30 4,044 4 155 15,649 50.09	RL10A-4-1	1 yr ('94)	28 / 3480	400	0	0	0	1	5	2,068	1	42	3,683	2	47	5,751	100.0%
	RL10B-2	3 yrs ('95-'98)	15 / 3500	700	1	119	1,701	3+	125	11,605	1	30	4,044	4	155	15,649	50.0%
YF-73 7 yrs ('76-'83) - 800 120 30,000 85.09	YF-73	7 yrs ('76-'83)	-	800	-	-	-	-	-	-	-	-	-	-	120	30,000	85.0%
YF-75 7 yrs ('86-'93) - 500 28,000 100.0	YF-75	7 yrs ('86-'93)	-	500	-	-	-	-	-	-	-	-	-	-	-	28,000	100.0%

* J-2S did not enter qualification due to program cancellation. Data included for comparative purposes only

• Emdee, J., "A Survey of Development Test Programs for Hydrogen Oxygen Rocket Engines," AIAA Paper No. 2001-0749.

 \mathbf{T}

Testing to Enhance Reliability (LOX/RP)

AIAA LRE Course

Booste	er Engir	ICS	Nominal		Feasibi	lity	E inclue	Develop ding sta	ment ge firings	inclu	Qualificat ding stag	tion le firings	Total inclu	Developi Qualifica ding stag	ment and tion je firings	
Designation	Time from Program Start to Qualification	Life (firings / secs)	Burn Time (secs)	Engines	Firings	Seconds	Engines	Firings	Seconds	Engines	Firings	Seconds	Engines	Firings	Seconds	Flight Success Rate
F-1	8 yrs ('59-'66)	20 / 2250	165	-	-	-	-	-	-	2	34	>2255	56	2805 [†]	252,958 [†]	100.0%
H-1 165K	2 yrs ('58-'60)	-	165	-	-	-	-	-	-	-	-	- [17	85	-	100.0%
H-1 188K	3 vrs ('60-'62)	-	165	-	-	-	-	-	-	-	-	-/	27	1.100	-	97.9%
H-1 200K	2 vrs ('63-'65)	-	165	-	-	-	-	-	-	-	-	-	48	1.700	-	N/A
H-1 205K	2 yrs ('65-'66)	-	165	-	-	-	-	-	-	-	-	ļ	16	800	-	100.0%
LR87-AJ-1	4 yrs ('55-'58)	-	138	-	-	-	-	-	-	1	46	3,579	-	-	-	-
MA-3 Booster	3 vrs ('58-'60	-	-	-	-	-	-	-	-	3	44	í _	-	-	-	98.2%
MA-3 Sustainer	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	96.4%
MA-5 Booster	3 yrs ('61-'64)	-	174	-	-	-	-	-	-	-	-	-	-	-	-	98.7%
MA-5 Sustainer	3 yrs ('61-'64)		266	-	-	-	-	-	-	-	-	ŀ	-	-	-	98.7%
MA-5A Booster	3 yr ('88-'91)	-	170	0	0	0	0	0	0	1	29	748	1	29	748	100.0%
MA-5A Sustainer	3 yr ('88-'91)		289	0	0	0	0	0	0	1	12	716	1	12	716	100.0%
NK-15/NK-15B	5 yrs ('64-'69)	1 / 110	110	-	-	-	-	-	-	-	-	-\	199	450	40,200	97.7%
NK-33 / NK-43	5 yrs ('69 - '74)	3 / 365	110	-	-	-	-	-	-	9	39	4,875	101	350	61,651	N/A
RD-171	10 yrs ('75-'85)	-	150	-	346	19,685	-	-	-	-	-	- \	~80	~275	~25,000	95.9%
RD-180 (Atlas III)	3 yrs ('96-'99)	-	186	-	-	-	8+	70	10,956	4+	25	4,618	11+	95	15,574	100.0%
RD-180 (Atlas V)	1 yr ('99-'00)	-	230	-	-	-	3+	19	3,420	1	5	1,024	4+	24	4,444	N/A
RS 27	1 yr ('72)	-	265	-	-	-	-	-	-	-	-	-	- \	-	-	100,0%
RS-27A	1 yr ('88)	-	265	0	0	0	0	0	0	1	22	-	1	22	-	100.0%
† = includes production due to lack of further information																
Upper	Stage H	Engi	nes	1	Feasibi	lity	E inclue	Develop	ment ge firings	inclu	Qualificat ding stag	tion le firings	Total inclu	Develop Qualifica ding stag	ment and tion le firings	
Designation	Time from Program Start to Qualification	Engine Life (firings / secs)	Burn Time (secs)	Engines	Firings	Seconds	Engines	Firings	Seconds	Engines	Firings	Seconds	Engines	Firings	Seconds	Flight Success Rate
LR91-AJ-1	4 yrs ('55-'59)	-	225	-	-	-	-	-	-	1	39	2,933	-	-	-	-
NK-43	5 yrs ('69 - '74)	3 / 365		-	-	-	-	-	-	-	-	-	5	13	969	- 1
RD-120	10 yrs ('75-'85)	-	315	-	-	-	-	-	-	-	-	-	-	-	-	94.9%

Emdee, J., "A Survey of Development Test Programs for LOX/Kerosene Liquid Rocket Engines," AIAA Paper No. 2001-3985. ٠

Test Demonstrated Reliability

OVERVIEW OF TEST FACILITIES FOR LIQUID PROPULSION TESTING (representative capabilities)

Rocket Propulsion Test Sites

AIAA LRE Course =

https://rockettest.ssc.nasa.gov

Test Capability Figures of Merit

AIAA LRE Course =

- Component Testing Capability
 - Thrust Scale, Propellants, Pressure, Duration
- Engine Testing
 - Thrust Scale, Propellants, Duration (& Vac if needed)
- Stage Testing
 - Thrust Scale, Propellants, Pressure

Pressure → ultra-low (vac demo) and ultra-high (for components dev) Duration → extended duration capability sufficient to run mission profile Propellants → cryo, or non-cryo, hypergol, storables, etc. Thrust Scale → appropriate thrust level infrastructure for test article size/thrust

SSC and Surrounding Buffer Zone

AIAA LRE Course —

Stennis Space Center Test Facilities

E-1 Stand

High Press, Full Scale (Battleship, Proto h/w)

A-1 ... Large Scale Devt. & Cert ... A-2

B-1/B-2 ... Full Scale Devt. & Cert

E-2

High Press Mid-Scale & Subscale

E-3 High Press Small-Scale Subscale

A-2

Stage & Engine Testing – SSC A Complex

AIAA LRE Course —

TEST STAND CAPABILITIES: Thrust capability of 1.5 M-lb Flame Deflector Cooling 220,000 gal/min Deluge System 75,000 gal/min Data measurement system Two derricks – 75 ton and 200 ton High-pressure gas distribution systems LOX and LH2 propellant supply systems Hazardous gas and fire detection systems Barge unloading capability (2 LOX, 2 LH) Diffuser (A-2)

Space Shuttle Main Engine Test

AIAA LRE Course =

Space Shuttle Engine

SSC A-1 Test Stand

Stage and Engine Testing – SSC B Complex

AIAA LRE Course =

B-2 Test of Delta IV Common Booster Core

B-1 Test of Delta IV RS-68

TEST STAND CAPABILITIES:

Thrust capability of 13 M-lb Flame Deflector Cooling 330,000 gal/min Deluge System 123,000 gal/min Data measurement system Two derricks – 175 ton and 200 ton High-pressure gas distribution systems LOX and LH2 propellant supply systems Hazardous gas and fire detection systems Barge unloading capability (3 LOX, 3 LH)

Component and Engine Testing - SSC E-1 Test Stand

AIAA LRE Course =

General Pressure Capabilities

- $LO_2/LH_2 \sim 8,500 \text{ psi}$
- RP ~ 8500 psi (Ready 1/06)
- •GN/GH ~ 15,000 psi
- •Ghe ~ 10,000 psi

•E1 Cell 1

- Primarily Designed for Pressure-Fed LO₂/LH₂/RP & Hybrid-Based Test Articles
- Thrust Loads up to 750K lb_f (horizontal)
- •E1 Cell 2
 - Designed for LH₂ Turbopump & Preburner Assembly Testing
 - Thrust Loads up to 60K $\rm lb_{f}$
- •E1 Cell 3
 - Designed for LO₂Turbopump, Preburner Assembly Testing & LOX/LH Engine Testing
 - Thrust Loads up to 750K $\rm lb_{\rm f}$

Mid-Scale Component/Engine Testing - SSC E-2

AIAA LRE Course =

•E2 Cell 1

- Primarily Designed for Pressure-Fed LO₂/RP1 Based Test Articles
- Thrust Loads up to 100K lb_f (horizontal)
- $LO_2/RP1 \sim 8500 \text{ psia}$
- GN/GH $\sim 15000\ psia$
- Hot GH (6000 psia/1300 F)

•E2 Cell 2

- Designed for LO₂ /H2O2/RP1 Engine/Stage Test Articles
- Loads up to 150K $lb_{\rm f}$

Altitude Simulation Capability for Propulsion

AIAA LRE Course

Spacecraft Propulsion Research Facility (Plum Brook Station B-2)

B-2 is a one-of-a-kind facility that tests full-scale upper-stage launch vehicles and rocket engines under simulated high-altitude conditions. (e.g. Delta LV Upper Stage – LOX/LH)

Purpose: To test an engine or vehicle that is exposed for indefinite periods to low ambient pressures, low background temperatures, and dynamic solar heating simulating the environment hardware encounters during orbital or interplanetary travel.

- certification and baseline tests of unique flight hardware
- capability for long duration space environment soaking
- spacecraft subsystem and full system integration testing

27

Altitude Simulation (cont.)

AIAA LRE Course =

Rocket Engine Firing Inside Vacuum Test Cell

Propulsion Test Area 400

White Sands Test Facility

- Eight engine/system test stands (5 vacuum cells)
- Long-duration high-altitude simulation -SSME OMS, RCS
- Hypergolic (Hydrazines, NTO) and cryogenic liquid rocket systems
 - -Small to medium thrust levels

For details see: https://rockettest.ssc.nasa.gov

Altitude Simulation System Operation for Rocket Engine Tests

Advanced Propulsion Test Capability

AIAA LRE Course

<u>Test Stand 115, 116</u> (Marshall Space Flight Center)

<u>TF 115</u>

- Ambient Test Capability
- Propellants: GH2, LH2, LOX, LCH4 & RP-1
- Maximum Thrust 4 K lbf
- The compact size of the facility makes it ideal for testing subscale components.

<u>TF 116</u>

- Multiple Position Facility
- Ambient Test Capability
- Designed to test High Pressure Combustion Devices, Engines/System, Cryogenic Propellant Systems

STATISTICS (HISTORICAL) OF LRE TESTING

SSC Testing History (1966 – 2004)

AIAA LRE Course —

Ref: Kirchner, C., Morgan, J., and Rahman, S., "SSC Rocket Propulsion Testing Major Statistics," SSC Internal Memo, 2005.

Ref: Kirchner, C., Morgan, J., and Rahman, S., "SSC Rocket Propulsion Testing Major Statistics," SSC Internal Memo, 2005.

Overview of US Engine Test Campaigns

AIAA LRE Course =

	<u>SSME</u> (Boost)	<u>F-1</u> (Boost)	<u>RS-68</u> (Boost)	<u>J-2</u> (U/S)	<u>RL-10A-1</u> (U/S)	<u>LMDE</u> (Lander)
Thrust	500 Klbf	1.5 Mlbf	700 Klbf	250 Klbf	15 Klbf	10 Klbf
Hot-Fire Test Seconds <u>Prior to</u> First Flight	110,000 s	250,000 s	**11,000 s (i/w)	120,000 s	71,000 s	149,000 s
Hot-Fire Test Seconds <u>After</u> First Flight	~750,000 s* (& counting)	30,000 s	6,810 s	in-work (i/w)	Upgraded to RL-10A-3	N/A
Hot-Fire Tests Prior to First Flight	726	2805	188	1730	707	2809
Years of Devt.	9	8	5 - 6	6	3	5
Missions Flown	113	~15	3	~15	i/w	6 (Apollo 11,12,14-17)
Vehicle	Shuttle	Saturn V	Delta IV	Saturn V	Various	Saturn V

*SSME Flight Seconds (~150,000 s) not counted

**RS-68 Pre-flight Seconds (in-work): ~19500 s total (~11000 s at SSC)

For many of the above: testing was performed at a variety of locations

• Emdee, J., "A Survey of Development Test Programs for Hydrogen Oxygen Rocket Engines," AIAA Paper No. 2001-0749.

• Emdee, J., "A Survey of Development Test Programs for LOX/Kerosene Liquid Rocket Engines," AIAA Paper No. 2001-3985.

• Elverum, G. et al., "The Descent Engine for the Lunar Module," AIAA Paper No. 67-521.

TEST PROJECT ENABLERS - Engineering Tools, Operations, Processes, Infrastructure -

Test Project Process

AIAA LRE Course =

• Life cycle of a typical test project

Test Facility/Project Modeling and Analysis

AIAA LRE Course =

-- Propellant System Thermodynamic Modeling and Test Simulation --

IntOut(1)=IntOut(2)

CFD Flow Modeling Applications

AIAA LRE Course =

Cavitating Venturi with Upstream Bend

Large Cryogenic High Pressure Valve

Temperature Distribution

- Also analyzed:
- Run Lines
- Run Tanks
- Pressure Regulators
- Rocket Plumes (T, P, v, dB)

"Movie" of Run Tank CFD

AIAA LRE Course —

State of the Art Test Stand Software

AIAA LRE Course =

- Configuration Management
 - Automated Electronic Process
 - Test Site Drawings
 - Future Project Requirements, Component Specs
- Data Acquisition and Controls Lab
 - Off-Line Testing
 - Test Software
 - Electrical Hardware

Data Acquisition and Control Systems Lab (DACS Lab)

State of the Art Test Stand Hardware

AIAA LRE Course —

- Cooperative Agreement Procurements
 - Large, High Pressure Cryogenic Valves
 - Quick Responding, High Pressure RTD's

Test Support Infrastructure

AIAA LRE Course =

Cryogenic Propellant Storage Facility (SSC) Six (6) 100,000 Gallons LOX Barges Three (3) 240,000 Gallons LH Barges

High Pressure Gas Facility (HPGF at SSC) (GN, GHe, GH, Air)

High Pressure Industrial Water (HPIW at SSC) 330,000 gpm

Additional Support

- -Laboratories
 - Environmental
 - •Gas and Material Analysis
 - •Measurement Standards and Calibration
- Shops
- Utilities

Test Technology Advancements

AIAA LRE Course

- Advanced Sensors and Measurement Systems
 - Smart Sensor testbed, and integrated sensor suites
 - Integrated System Health Management testbed
- Advanced Data Acquisition and Controls
 - Closed loop fast feedback controls
 - System simulation integrated with Facility Controls
- Mechanical Components and Systems
 - Comprehensive modeling and simulation from Propellant tank to Test Article
 - Computational fluid dynamics solutions to complex internal flows (tanks, valves)
 - High performance test stand valves (15000 psi working pressures, rapid actuation)
- Plume Effects Prediction and Monitoring
 - Non-intrusive diagnostics (species, acoustics, thermal)
 - CFD analysis of plume effects with Benchmarked Codes

NON-NASA TEST CAPABILITY - DOD, Commercial, University -

Rocket Propulsion Test Sites

AIAA LRE Course =

https://rockettest.ssc.nasa.gov

- Significant World Class Assets for Liquid Rocket Propulsion
 - Air Force Research Lab (AFRL, a.k.a. "rocket lab"), in CA.
 - Sea-Level Stands 2-A (components), and 1-D (engines)
 - Arnold Engineering Development Center (AEDC), in TN.
 - Altitude Simulation Stand J-4 (engines)

- Pratt & Whitney at West Palm Beach, FL.
 - Test stands E-6 and E-8
 - Conducted testing of SSME advance turbopump, and upper stage engine
- Northrup Grumman (was TRW) at San Juan Capistrano, CA.
 - Several test stands
 - Conducted testing of Lunar Lander in 1960s
- Rocketdyne at Santa Susanna Field Lab in CA.
 - RS-27 engine test to be retired with fleet; future of stands TBD
- Aerojet at Sacramento, CA.
 - Several test stands
 - Titan core liquid propulsion to be retired with fleet; future is TBD
- Other commercial entities
 - SpaceX corp. in TX; currently testing the Falcon launcher LRE's

Constellation University Institutes Program

- REAP = Rocket Engine Advancement Program
- Significant Test Capabilities
 - Penn State, Purdue, UAH, for liquid rocket engine technology
 - SOA for Plume Diagnostics, and Computational Modeling

Penn State University

AIAA LRE Course =

PROPULSION ENGINEERING RESEARCH CENTER

POC: Prof. Bob Santoro and Dr. Sibtosh Pal (Dept. of Mechanical Engineering)- CRYOGENIC COMBUSTION LAB

Representative LRE Injector Studies Performance & Mixing Combustion Stability Heat Transfer Non-Intrusive Diagnostics

(a) First LO₂/GH₂ firing at CCL.

(b) GO2/GH2 firing.

(c) LO2/GH2 firing.

(d) RBCC rocket-ejector (GO2/GH2)firing.

(e) UV closeup for GO2/RP-1/GH2 firing.

(f) Injector closeup for $GO_2/RP-1/GH_2$ firing.

PROPULSION ENGINEERING RESEARCH CENTER

(cf. Santoro et al., AIAA Paper No.2001-0748)

System	Diagnostic	Measurements
2 component PDPA system	drop size and velocity	• measuring LOX, methanol and RP-1 drops under hot-fire conditions.
2-component LDV system	2 -component velocity	• characterizing velocity field for GO ₂ /GH ₂ combusting flowfield for shear coaxial element.
Raman system (Nd:Yag laser/Flash pumped dye laser + ICCD camera)	species measurements	 measuring H₂, O₂ and H₂O species for various injectors (GO₂/GH₂ propellants) at pressures up to 1000 psia. measuring H₂, O₂, N₂ and H₂O species
Planar Laser Induced Fluorescence System (Nd: Yag laser + Dye laser + frequency doubler + ICCD camera)	OH- radical measurements	 in RBCC rocket-ejector environment marking combustion zone for shear layers.
Laser Induced Incandescence	soot	• soot concentration measurements in hydrocarbon fuel flames at pressures up to 150 psia.
High speed cinematography	dynamic event capture @ 8000 fps	• atomization and combustion phenomena.
Schlieren photography	density gradient visualization	• reacting shear layer, two-phase flow injection, super-critical injection.

Purdue University

High Pressure

Maurice J. Zucrow Laboratories

Propulsion

Combustion

Gas Dynamics

Turbomachinery Fluid Dynamics

Chaffee Hall

24 Acre remote complex adjacent to Purdue Airport

•

POC: Prof. Bill Anderson and Prof. Steve Heister (Dept. of Aeronautics and Astronautics

Purdue "Zucrow Lab" (cont.)

AIAA LRE Course =

Component Test & Validation

Test & Evalution

Assembly & Installation

- Comprehensive Liquid Rocket Engine testing is essential to risk reduction for Space Flight
- Test capability represents significant national investments in expertise and infrastructure
- Historical experience underpins current test capabilities
- Test facilities continually seek proactive alignment with national space development goals and objectives including government and commercial sectors

BACKUP SLIDES

AIAA LRE Course —

SSC Test Stand Layout

AIAA LRE Course =

E-Complex History

AIAA LRE Course =

•Late 1980s/Early 1990's -DoD/NASA Advanced Launch System and National Launch System -National Aerospace Plane

•Construction Starts

-E-1 1989 -E-2 1991

-E-3 1995

•First Test

-E-1 1999

-E-2 1994

-E-3 1995

(RS-84: Fall 2003)

SSC E-1 Test Stand Projects

AIAA LRE Course =

250 Klbf Hybrid ... 4 tests 240 Klbf Aerospike ... 17 tests (1999-2001)(1999, 2001)TRW 650K TCA ... 15 tests **Hot-Fire** (Summer 2000) IPD (250K-scale) LOX Pump RTF SSME Accep (8-19-04) **Cold-Flow** (Fall 2002) IPD Ox Rich Preb ... 9 tests **Hot Fire** (Sep - Oct 2002) IPD Eng. Install (10-15-04) IPD LOX Pump ... 12 tests Hot Fire (Mar - May 2003) IPD LH Pump ... 6 tests Cold-Flow (May - Nov 2004) Subscale Ox-Rich Preb ... 15 tests (RS-76: Nov 98 – Jan 99)

SSC E-2 Test Stand

AIAA LRE Course —

E-2 Cell 1 Test of RS-84 LOX Rich Preburner

E-2 Cell 1 Test of LR-89 LOX/RP Thrust Chamber

SSC E-3 Test Stand Capabilities

AIAA LRE Course =

•E3 Test Stand Capabilities

Primarily Designed for Rocket Engine Component
& Sub-Scale Engine Development

- Comprised of Two (2) Test Cells

•E3 Cell 1

-Horizontal Test Cell

-Propellants: LO₂, GOX, JP-8, GH₂

-Support Gasses: LN₂, GN₂, GHe

-Thrust Loads up to 60K $\rm lb_{f}$

•E3 Cell 2

-Vertical Test Cell

-Propellants: LO₂, H₂O₂, JP-8

-Support Gasses: LN₂, GN₂, GHe

-Thrust Loads up to 25K $\rm lb_{f}$

SSC E-3 Test Stand Projects

AIAA LRE Course

Hydrogen Peroxide Programs (50% to 98%)

- Tested Several H2O2 Test Articles
 - •Boeing AR2-3
 - •OSC Upper Stage Flight Experiment
 - Pratt & Whitney Catalyst Bed

