AD NUMBER

AD508757

CLASSIFICATION CHANGES

TO:

unclassified

FROM: confidential

LIMITATION CHANGES

TO:

Approved for public release, distribution unlimited

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; Apr 1970. Other requests shall be referred to AFRPL [RPOR/STINFO], Edwards AFB, CA 93523.

AUTHORITY

Air Force Rocket Propulsion ltr, 15 Mar 1971; Air Force Rocket Propulsion ltr, 5 Feb 1986 AFRPL-TR-70-6 VOL 1

NG U

-

CISTO E RECONTROL STREET

1

CHANESED AUTH, CH

PATED.

1 DE

STINES

620-1001

AIR FORCE REUSABLE ROCKET ENGINE PROGRAM

XLR129-P-1

DEMONSTRATOR ENGINE DESIGN

AFRPL-TR-70-6

APRIL 1970

R. R. ATHERTON

PRATT & WHITNEY AIRCRAFT

DIVISION OF UNITED AIRCRAFT CORPORATION

FLORIDA RESEARCH AND DEVELOPMENT CENTER

TECHNICAL REPORT

AFRPL-TR-70-6 VOL 1

GROUP 4 DOWNGRADED AT 3 YEAR INTERVALS: DECLASSIFIED AFTER 12 YEARS

PATENT SECRECY NOTICE

PORTIONS OF THIS DOCUMENT CONTAIN SUBJECT NATTER COVERED BY A U.S. PATCHY OFFICE SECRECY ORDER WITH MODIFYING SECURITY RECUITEMENTS PERMIT, NANJLING SHALL BE IN ACCORDANCE WITH THE PERMIT AT DESCRIBED ON FACE A AND INDICATED HEREIN, VID-LATORS MAY BE SUBJECT TO THE PERMITHES FREGERIES SY. TITLE 35, U.S. C. (1032), SECTIONS ISE AND 105.

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE EBPIONAGE LAWS. TITLE IS U. S. C., SECTIONS 793 AND 794. ITS TRANSMISSION OF THY MEVELATION OF ITS CONTENTS IN ANY MANNER TO AM UNAUTHORIZED PERED.(IS PROHIBITED BY LAW.

AIR FORCE ROCKET PROPULSION LABORATORY

AIR FORCE SYSTEMS COMMAND

EDWARDS AIR FORCE BASE EDWARDS, CALIFORNIA "When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other perior or corporation, conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto."

This material contains information affecting the national defonse of the United States within the meaning of the oppionage laws, Title 18, U.S.C., Sec. 793 and 794, the transmission or the revolution of which in any manner to an unauthorized person is prohibited by law.

"In addition to security requirements which must be met, this document is subject to special export controls and each transmittal is foreign governments or foreign nationals may be made only with prior approval of AFRPL (RPOR/STINFO), Edwards, California 93523."

Pratt & Whitney Aircraft

PWA FR-3337

PATENT SECRECY NOTICE Material in this publication relating to LAMINATED CHAMBER COOLING MEANS AND A SLOT TUBE INJECTOR CONCEPT

reveals subject matter contained in U. S. Patent Application Serial No. 319,047 and 725,954 entitled "High Pressure Rocket and Cooling Means" and "Slot Tube Swirler Injector," respectively, which have been placed under Secrecy Orders issued by the Commissioner of Patents. These Secrecy Orders have been modified by a SECURITY REQUIREMENTS PERMIT.

A Secrecy Order prohibits publication or disclosure of the invention, or any material information with respect thereto. It is separate and distinct, and has nothing to do with the classification of Government contracts.

By statute, violation of a Secrecy Order is punishable by a fine not to exceed \$10,000 and/or imprisonment for not more than two years.

A SECURITY REQUIREMENTS PERMIT authorizes disclosure of the invention or any material information with respect thereto, to the extent set forth by the security requirements of the Government contract which imposes the highest security classification on the subject matter of the application, except that export is prohibited.

Disclosure of these inventions or any material information with respect thereto is prohibited except by written consent of the Commissioner of Patents or as authorized by the permits.

The foregoing does not in any way lessen responsibility for the security of the subject matter as imposed by any Government contract or the provisions of the existing laws relating to espionage and national security.

UNCLASSIFIED

and the second second

CZO-1081

AFRPL-TR-70-6 VOL 1

CONFIDENTIAL

(UNCLASSIFIED TITLE)

AIR FORCE REUSABLE ROCKET ENGINE PROGRAM XLR129-P-1

DEMONSTRATOR ENGINE DESIGN

AFRPL-TR-70-6

APRIL 1970

GROUP 4 DOWNGRADED AT 3 YEAR INTERVALS: DECLASSIFIED AFTER 12 YEARS

PATENT SECRECY NOTICE

PORTIONS OF THIS DOCUMENT CONTAIN SUBJECT MATTER COVERED BY A U.S. PATENT OFFICE SECRECY ORDER WITH MODIFYING SECURITY REQUIREMENTS PERMIT. HANDLING SHALL BE IN ACCORDANCE WITH THE PERMIT AS DESERIBED ON PAGE A AND INDICATED HEREIN, VIO-LATORS MAY BE SUBJECT TO THE PENALTIES PRESCRIBED BY, TITLE 35, U. S. C. (1952), SECTIONS 182 AND 186.

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18 U. S. C., Sections 793 and 794, its thansmission or the Revelation of its contents in any manner to an unauthorized person is prohibited by Law.

CONFIDENTIAL

FOREWORD

(U) This Milestone Report is issued at the time in the program when the design of all major components as well as the design of the demonstrator engine system has been completed. It presents the design approach, mechanical description, and operating characteristics of the XLR129-P-1 engine and each major component. This report is issued as a technical report in compliance with the requirements of Contract F04611-68-C-0002. Classified information has been extracted from documents listed under References.

(U) This publication was prepared by the Pratt & Whitney Aircraft Florida Research and Development Center as PWA FR-3337.

(U) This Technical Report has been reviewed and is approved.

Robert E. Probst Captain, USAF Program Manager Air Force Rocket Propulsion Laboratory

the state of the state

UNCLASSIFIED ABSTRACT

(U) This report describes the design of the XLR129-P-1 Demonstrator Rocket Engine and its principal components. The program is being conducted by Pratt & Whitney Aircraft under Air Force sponsorship at the Florida Research and Development Center. Design of all components, the second of five program phases, has been completed. Included in the report is the design approach, mechanical description, and operating characteristics for each component. The engine is designed to operate with liquid oxygen and liquid hydrogen propellants, uses the staged combustion cycle, incorporates variable thrust, and variable mixture ratio capability. The XLR129-P-1 engine, having a high area ratio nozzle, is designed to be reusable as in aircraft engine practice, and provides 250,000 pounds thrust in vacuum. The program started 6 November 1967, and is planned for 54 months. The major program objectives include: (1) design of the components and engine system with a series of component tests to support the design effort, (2) development of the components to qualify them for engine use and to demonstrate the life of lifelimited sub-components, and (3) a series of engine tests to demonstrate operational capabilities.

UNCLASSIFIED

PREFACE

(U) This volume contains introductory and summary material relating to the requirements of the XLR129-P-1 Demonstrator Rocket Engine Program and to the components and characteristics of the engine system. Detailed component descriptions are contained in Volume 2. Volume 3 contains data pertaining to the control system, demonstrator engine mockup, and plumbing system. Also included in Volume 3 are appendixes containing structural design criteria and data.

TABLE OF CONTENTS

a second concerned

1

Section

Ι

II

III

A.

Title VOLUME 1 INTRODUCTION. . . General _ Program Tasks

Page .

1

1

. .

в.	Program Tasks	3
SUM	MARY	5
A.	Demonstrator Engine	5
	1. Background	5 7
B.	Preburner Injector	7
c.	Transition Case	9
D.	Main Burner Injector	10
Ε.	Main Burner Champber	11
F.	Primary Nozzle	12
G.	Two-Position Nozzle and Translating Mechanism	13
н.	Low-Speed Inducer	14
1.	Fuel Turbopump	14
J.	Oxidizer Turbopump	15
к.	Control System	19
ENG	INE SYSTEM DESCRIPTION AND PERFORMANCE	21
A.	Description	21
в.	Operating Characteristics	24
	1. Steady-State Operating Parameters	24
	2. Start, Shutdown, and Throttle Transients	31
c.	Layout and Schematic	31
D.	Weight	31

TABLE OF CONTENTS (Continued)

Section		Title													
	E.	Interfaces	31												
	F.	Design Criteria	40												
	G.	Systems Analysis	40												
		1. General	40 41												
		3. Special Design Cycle Studies	47												
	н.	Performance Data	5 6												

VOLUME 2

IV

COM	PONENT DESCRIPTION	5
А.	Preburner Injector and Ignition System	5
	1. Introduction	5
	2. Design Requirements	6
	3. Design Criteria	6
	4. Mechanical Description	6
	5. Operating Characteristics	6
	6. Design Approach	7
	7. Ignition Exciter and Plug Assemblies	9
Β.	Transition Case	10
	1. Introduction	10
	2. Design Requirements	10
	3. Design Criteria	10
	4. Mechanical Description	10
	5. Operating Characteristics	11
	6. Design Approach	11
C.	Main Burner Injector and Ignition System	15
	1. Introduction	15
	2. Design Requirements	15
	3. Design Criteria	15
	4. Mechanical Description	154
	5. Operating Characteristics	16
	6. Design Approach	16
D.	Main Burner Chamber	199
	1. Introduction	19'

and the last

Section

.

ł

TABLE OF CONTENTS (Continued)

	Title	age
	2. Design Requirements	199
	3. Design Criteria	200
	4. Mechanical Description	202
	5. Operating Characteristics	214
	6. Design Approach	215
E.	Primary Nozzle	231
	1. Introduction	231
	2. Design Requirements	231
	3. Design Criteria	233
	4. Mechanical Description	233
	5. Operating Characteristics	240
	6. Design Approach	240
F.	Two-Position Nozzle and Translating Mechanism	249
	1. Introduction	249
	2. Design Requirements	249
	3. Design Criteria	251
	4. Mechanical Description	251
	5. Operating Characteristics	258
	6. Design Approach	25 9
G.	Fuel Low-Speed Inducer	299
	1. Introduction	299
	2. Design Requirements	299
	3. Design Criteria.	299
	4. Mechanical Description	302
	5. Operating Characteristics	302
	6 Design Approach	308
		500
н.	Oxidizer Low-Speed Inducer	339
	1. Introduction	339
	2. Design Requirements	341
	3. Design Criteria	341
	4. Mechanical Description	347
	5. Operating Characteristics	348
	6. Design Approach	348
T	Fuel Turbonum	361
1.		701
	1. Introduction	361
	2. Design Requirements	361
	3. Design Criteria	361
	4. Mechanical Description	361
	•	

UNCLASSIFIED

and the second program in the second second

TABLE OF CONTENTS (Continued)

Section

1 -

Title

Page

	5. 6.	Operating Characteristics	406 406
J.	Oxic	dizer Turbopump	453
	1.	Introduction	453
	2.	Design Requirements	455
	3.	Design Criteria	455
	4.	Mechanical Description 4	455
	5.	Operating Characteristics	490
	6.	Design Approach	490

VOLUME 3

V

CONT	TROL	SYSTEM	•	••	•	••	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	521
А.	Syst	em Des	cri	ptio	n	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	521
	1.	System	Red	quir	eme	nts		G	ene	era	a 1	•	•	•	•	•		•	•	•	521
	2.	System	Re	quir	eme	nt	-	Spe	ec:	if:	ic	•	٠	•	٠	•	•	٠	٠	٠	521
	3.	Engine	De	scri	pti	on	•	٠	٠	٠	•	٠	٠	٠	٠	•	٠	٠	•	•	522
	4.	Contro	1 Co	ompo	nen	it D)e s	cr	ip	tid	o n	•	•	•	•	•	٠	٠	•	•	522
	5.	Vendor	Coi	ntro	1 S	yst	em	E	ff	ori	t	•	٠	•	•	•	•	٠	•	•	525
	6.	Reliab	ili :	ty .	•	• •	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	529
Β.	Pret	ourner	Oxid	lize	r V	alv	e	•	•	•	•	•	•	•	•	•	•	•	•	•	531
	1.	Introd	uct	ion	•		•	•		•	•	•	•			•	•	•	•	•	531
	2.	Design	Red	quir	eme	nts	з.	•	•	•	•			•	•	٠		•	•		531
	3.	Design	Cr	iter	ia					•	٠	•	•		•	•	•	•	•		534
	4.	Mechan	ica	l De	scr	ipt	io	n		•	•	•	•			•	•				534
	5.	Operat	ing	Cha	rac	ter	is	ti	cs							•	•				539
	6.	Design	App	proa	ch	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	541
C.	Pret	ourner	Fue	l Va	lve	•••	•	•	•	•	•	•	•	•	•	•		•	•	•	553
	1.	Introd	uct:	ion												•	•	•			553
	2.	Design	Re	quir	eme	nts	з.			•			•			٠	•				553
	3.	Design	Cr	iter	ia		•	•		•	•					•					553
	4.	Mechan	ica	l De	scr	ipt	:io	n					•	•	•	•	•				556
	5.	Operat	ing	Cha	rac	ter	is	ti	cs	•	•	•		•		•	•	•			557
	6.	Design	Ар	proa	ch		•	•	•	•	•	•	•	•	•	•	•	•	•	•	561
D.	Main	n Ch am b	er	Oxid	ize	er \	/al	ve	•	•	•	•	•	•	•	•	•	•	•	•	579
	1.	Introd	uct	ion	•		•													•	579
	2.	Design	Re	quir	eme	ente	з.	•		•	•		•		•		•	•	•		580
	3.	Design	Cr	iter	ia		•	•	•	•	•	•	•	•	•	•	•	•	•	•	580
						vi	ii														

-

/

TABLE OF CONTENTS (Continued)

Section					Ti	tle													Page
		4.	Mechani	cal De	scri	ptic	n										•	•	581
		5.	Operati	ng Cha	ract	eris	tic	: \$		• •		•	•				•	•	587
		6.	Design	Approa	ch.	• •	•	•	•	• •	•	٠	٠	•	٠	•	•	•	589
	E.	Two-	-Positio	n Nozz	le C	oola	nt	Su	ıbb	ly	Sy	ste	201	•	•	•	•	•	613
		1.	Introdu	ction						• •	•	•							613
		2.	Design	Requir	emen	ts.				•	• •								614
		3.	Design	Criter	ia.			•		• •									614
		4.	Mechani	cal De	scri	ptic	n		•										615
		5.	Operati	ng Cha	ract	eris	tic	s						•				•	619
		6.	Design	Approa	ch.					• •	•		•	•				•	620
	F.	Prop	pellant	Vent V	alve	s.	•	•	•	• •		•	•	•	•	•	•	•	623
		1	Introdu	ation															612
		2.	Donian	Poquár	• •		•	•	•	• •	• •	•	•	•	•	•	•	•	623
		2.	Design	Critor	enen	13.	•	•	•	• •	•••	•	•	•	•	•	•	•	623
		J. /	Moohani	cal Do	id .	ntic		•	•	• •	••	•	•	•	•	•	•	•	625
		ч. с	Operati	no Cha	SCI I	owio	nu Le dia		•	• •	• •	•	•	•	•	•	•	•	624
		ر د	Deciar	Ang Cha	u act	errs	LIC	3	•	• •	• •	•	٠	•	•	•	•	•	020
		0.	Design	Approa	ien .	• •	•	•	•	• •	• •	•	•	•	•	•	•	•	020
	G.	Heli	ium Syst	em	••	•••	•	•	•	• •	•	•	٠	•	٠	٠	•	•	631
		1.	Introdu	ction															631
		2.	Design	Requir	emen	ts.													631
		3.	Design	Criter	ia.											÷			633
		4	Mechani	cal De	scri	ntic	n							·		Ţ	Ī		634
		5	Operati	no Cha	ract	erie	tic				•	•	•	•	•	•	•	•	636
		6.	Design	Approa	ich .					•••	•	•	•	•		•	:	•	637
	н.	Stat	tic Seal	s	• •		•	•	•	• •	•	•	•	•			•	•	6 39
		1	Introdu	ction															619
		2	Decion	Poquir	· ·	•••	•	•	•	• •	•	•	•	•	•	•	•	•	640
		2.	Design	Catron	emen	L3 .	•	•	•	• •	•	•	•	•	•	•	•	•	640
		J.	Design		Id .	• •	_•	•	•	• •	• •	•	•	•	•	•	•	•	661
		4.	Mechani	cal De	SCFI	pt10	n 	•	•	• •	•	•	•	٠	•	•	٠	٠	641
		5.	Operati	ng Cha	ract	eris	C10	: 5	٠	• •	•	٠	٠	٠	•	•	•	•	043
		0.	Design	Approa	cn.	•••	•	٠	•	• •	• •	•	•	•	•	•	•	•	048
VI	DEM	ONSTR	RATOR EN	GINE M	юски	P AN	DE	PLU	MB	INC	; .	•	•	٠	•	•	•	٠	659
	А.	Engi	ine Mock	up.	••	•••	•	•	•	• •	•	•	•	٠	•	•	•	•	6 59
		1.	Introdu	ction		• •	-												650
		2.	Descrip	tion o	f En	gine	Co	, nt	Eio	ur	at i	on	Ż					•	650
		3.	Compone	nt Des	ign				. ~ 0		· ·								664
			· · · · · · · · · · · · · · · · · · ·		- 0		-	-			-	-		- ·				-	004

TABLE OF CONTENTS (Concluded)

Section

-

Title

.

	4. Engine Plumbing Design 66	54
	5. Primary Component Locations	54
	6. Envelope Definition of Vendor-Supplied	
	Components	55
	7. Engine Instrumentation 6	55
	8. Two-Position Nozzle	55
	9. General	55
	B. Plumbing	57
	1. Introduction	57
	2. Design Philosophy and Criteria	57
	3. Preburner Fuel Line	59
	4. Fuel Pump Discharge Lines	75
	5. Oxidizer Pump Discharge Lines	77
	6. Preburner Oxidizer Supply Line	31
	7. Main Burner Oxidizer Line	33
	8. Fuel Turbonum Inlet Line	26
	9 Ovidizer Turbonumn Inlet Line	28
	10 Fuel low-Speed Inducer Turbine Supply Line	28
	11 Primary Nozzle Fuel Supply Line 6	31
	12 Main Chamber Coolant Supply Line	31 1
	13 Small Line Connector and Seal Selection 60	22
	14 Summary 7	, כי וםו
		,,
Appendixes	S	
Ĭ	DESIGN STRUCTURAL CRITERIA	11
II	INCONEL 718 THREADED CONNECTORS FOR A 6000-PSI	
	FLUID SYSTEM	12
	A. Introduction	12
	B. Summary	12
	C. Program Activities	12
-	l Seal Design 7	12
	2. Fitting Design	14
	3. Drawings and Specifications	15
	s. startings and specifications () () () () ()	
	D. References	15
III	FINAL DESIGNS FOR INCONEL THREADED FITTINGS	16

-

t.

*

LIST OF ILLUSTRATIONS

Figure	Title	Page
1.	(U) XLR129-P-1 Demonstrator Engine Program Schedule	2
2.	(U) XLR129-P-1 Demonstrator Engine	6
3.	(U) Preburner Injector Cross Section	8
4.	(U) Transition Case Full-Scale Mockup	9
5.	(U) Main Burner Injector Configuration	10
6.	(U) Main Burner Chamber Assembly Side View	11
7.	(U) Primary Nozzle Configuration	12
8.	(U) Two-Position Nozzle Design	13
9.	(U) Fuel Low-Speed Inducer	16
10.	(U) Oxidizer Low-Speed Inducer	17
11.	(U) Fuel Turbopump Assembly	18
12.	(U) Oxidizer Turbopump Assembly	19
13.	(U) Operating Range for Demonstrator Engine	21
14.	(U) XLR129-P-1 Demonstrator Engine	22
15.	(U) Demonstrator Engine Propellant Flow Schematic	23
16.	(U) Demonstrator Engine Estimated Start, Shutdown, and Throttle Transient Data	31
17.	(U) Demonstrator Engine Layout	33
18.	(U) Demonstrator Engine Complete Propellant Flow Schematic	37
19.	(U) Fuel Inlet Operating Region	38
20.	(U) Oxidizer Inlet Operating Region	39
21.	(U) Propellant Temperature Limits for Fuel Trim Capability	40
22.	(U) Effect of Pump Interstage Tap-Off Location on Lightweight Heat Exchanger Coolant Valve	51

-

Figure		Title	Page
23.	(U)	Effect of Pump Interstage Tap-Off Location on Engine Impulse Efficiency	52
24.	(U)	Effect of Low-Speed Inducer Tap-Off Location on Lightweight Heat Exchanger Coolant Valve	5 3
25.	(U)	Effect of Low-Speed Inducer Tap-Off Location on Engine Impulse Efficiency	54
26.	(U)	Effect of Fuel Preburner Supply Tap-Off Location on Lightweight Heat Exchanger Coolant Valve	55
27.	(U)	Effect of Fuel Preburner Supply Tap-Off Location on Engine Impulse Efficiency	5 6
28.	(U)	Altitude Performance for Demonstrator Engine (Booster Application)	57
29.	(U)	Sea Level Specific Impulse vs Mixture Ratio (Booster Application)	57
30.	(U)	Vacuum Specific Impulse vs Thrust (Booster Application)	5 8
31.	(U)	Preburner and Torch Location	60
32.	(U)	Preburner Injector Cross Section	63
33.	(U)	Preburner Injector Face Pattern	64
34.	(U)	Preburner Torch Assembly	65
3 5.	(U)	Preburner Torch Assembly, Mounting and Sealing	66
36.	(U)	Preburner Torch Assembly Propellant Flow	67
37.	(U)	Preburner Combustion Temperature	68
38.	(U)	Effective Oxidizer Injection $\Delta P/P$	68
39.	(U)	Preburner Fuel Injector $\Delta P/P$	69
40.	(U)	Preburner Combustion Chamber Pressure	69
41.	(U)	Preburner Injector Primary-to-Total Oxidizer Flow Split	70

CONFIDENTIAL

() Alternation

Figure		Title			Page
42.	(U)	Flow Rate through Preburner Fuel Injector	•	•	70
43.	(U)	Flow Rate through Preburner Oxidizer Injector .	•	•	71
44.	(U)	Preburner Injector Momentum Ratio	•	•	71
45.	(U)	Preburner Injector Mixture Ratio vs Thrust	•	•	72
46.	(U)	Preburner and Main Burner Torch Steady-State Operating Characteristics at Start (Altitude) .		•	73
47.	(C)	Preburner and Main Burner Torch Steady-State Operating Characteristics, Thrust 100%-75%, r = 5	•	•	73
48.	(C)	Preburner and Main Burner Torch Steady-State Operating Characteristics, Thrust 100%-50%, r = 7	•	•	74
49.	(C)	Preburner and Main Burner Torch Steady-State Operating Characteristics, Thrust $100\%-50\%$, r = 7	•	•	74
5 0.	(C)	Preburner and Main Burner Torch Steady-State Operating Characteristics, Thrust 50%-20%, r = 5	•	•	75
51.	(C)	Preburner and Main Burner Torch Steady-State Operating Characteristics, Thrust 50%-20%, r = 6	•	•	75
52.	(C)	Preburner and Main Burner Torch Steady-State Operating Characteristics, Thrust 50%-20%, r = 7	•	•	76
53.	(U)	Preburner Temperature Profile, Rig 35117, Test No. 1.01, 11-Inch Rake	•	•	78
54.	(U)	Preburner Temperature Profile, Rig 35117, Test No. 1.01, 11-Inch Rake	•	•	78
55.	(U)	Preburner Temperature Profile, Rig 35117, Test No. 2.01, 11-Inch Rake	•	•	79
5 6.	(U)	Preburner Temperature Profile with Primary-To- Total Oxidizer Flow Split Variation		•	79

CONFIDENTIAL

1

1

LIST OF ILLUSTRATIONS (Continued)

Figure	Title		Page
57.	(U) Preburner Temperature Profile, Rig 35117-2, Test No. 4.02, 11-inch Rake	••	80
58.	(U) Comparison of Build 2 Scrub Liner Damage	• •	81
5 9.	(U) Locations of Burn Damage to Stability Liner	••	82
60.	(U) Swirl Patterns on Liner Walls	• •	82
61.	(U) Injector Secondary Burner Area After Test No. 2	2.01.	85
62.	(U) Element Test Matrix Test Results	• •	90
63.	(U) Preburner Rig Configuration		91
64.	(U) Nut-Retained One-Piece Oxidizer Element	••	92
65.	(U) Capnut Retained Two-Piece Oxidizer Element	•••	92
66.	(U) Faceplate Support Grating Concept	•••	, 9 3
67.	(U) Transition Case Concept with Integral Injector Fuel Manifold		94
68.	(U) Igniter Chamber Pressures Created by Lit and Unlit Propellant Flowrates	•••	96
69.	(U) Igniter Propellant Momentum	•••	96
70.	(U) Igniter Momentum for Various Igniter Back Pressures	••	97
71.	(U) Transition Case Location	· • •	104
72.	(U) Transition Case Full-Scale Mockup	••	105
73.	(U) Engine Maneuver Loads	•••	106
74.	(U) Transition Case Assembly	•••	107
75.	(U) Outer Case and Cooling Liner		108
7 6.	(U) Preburner Flow Duct		110
77.	(U) Preburner Flow Duct to Centerbody Piston Ring Seal		111

xiv

÷.

2

1.7 A

LIST OF ILLUSTRATIONS (Continued)

Figure		Title	Page
7 8.	(U)	Connections of Front and Rear Sections of Hot Gas Scrub Liner	112
79.	(U)	Preburner Flow Duct Front Support	113
80.	(U)	Transition Case Centerbody	114
81.	(U)	Centerbody Inner Liner Assembly	115
82.	(U)	Gimbal Thrust Ball Assembly	117
83.	(U)	Gimbal Ball Retaining Clamp Assembly	117
84.	(U)	Engine/Vehicle Interface	118
85.	(U)	Preburner Duct Liner Inlet Environment	120
86 <i>.</i>	(U)	Transition Case Exit Conditions	120
87.	(U)	Preburner Duct Surface Temperatures	121
88.	(U)	Preburner Duct Temperature Distribution	122
89.	(U)	Gimbal Ball Forces	122
90.	(U)	Transition Case - Component and Cooling Liner Arrangement	123
91.	(U)	Candidate Transition Case Configurations	125
92.	(U)	Component Arrangement Study with Canted Transition Case	125
<i>y</i> 3.	(U)	Component Arrangement Study with Co-Planar Transition Case	126
94.	(U)	Structural Model Test Program	126
95.	(U)	Canted Spherical Internal Duct Configuration	128
96.	(U)	Co-Planar Internal Duct Configuration	128
97.	(U)	Truncated Sphere Model	129
98.	(U)	Intersecting Sphere Model	129
99.	(U)	Canted Ring Model	130

UNCLASSIFIED

LIST OF ILLUSTRATIONS (Continued)

Figure	Title	Page
100.	(U) Stress Profile, Transition Case Study Model	132
101.	(U) Interaction Curves for Inconel 718 and Waspaloy	136
102.	(U) Stress Calculation Diagram	138
103.	(U) Uniaxial-Multiaxial Stress Materials Data	138
104.	(U) Schematic of Test Model	139
105.	(U) Inconel 718 T-Weld Test Specimen	142
106.	(U) Flow Model Installation	145
107.	(U) Transition Case Duct Flow Model Facility Schematic	145
108.	(U) Photograph of Flow Characteristics	146
109.	(U) Traverse Probes Locations	147
110.	(U) Calculated Flow Characteristics	147
111.	(U) Main Burner Injector and Torch Location	152
112.	(U) Main Burner Injector Configuration	155
113.	(U) Typical Main Burner Injector Cross Section	156
114.	(U) Typical Spraybar	156
115.	(U) Segmented Injector Concept	157
116.	(U) Main Burner Injector Spraybar Cross Section	158
117.	(U) Main Burner Torch Assembly	159
118.	(U) Main Burner Torch Assembly, Propellant Flow Mounting and Sealing	159
119.	(U) Main Chamber Pressure	161
120.	(U) Main Burner Fuel Injector Gas Temperature	161
121.	(U) Main Burner Fuel Pressure Drop	162
122.	(U) Main Burner Oxidizer Pressure Drop	162

xvi

CONFIDENTIAL

ж÷ Ç

2404

LIST OF ILLUSTRATIONS (Continued)

Figure	Title	Page
123.	(U) Main Burner Oxidizer Injector Flow Rate	163
124.	(U) Main Burner Fuel Injector Flow Rate	163
125.	(U) Fuel-to-Oxidizer Momentum Ratio	164
126.	(U) Main Burner Injector Mixture Ratio	164
127.	(U) Main Burner and Preburner Torch Steady-State Operating Characteristics at Start (Altitude)	165
128.	<pre>(C) Main Burner and Preburner Torch Steady-State Operating Characteristics, Thrust 100%-75%, r = 5</pre>	165
129.	<pre>(C) Main Burner and Preburner Torch Steady-State Operating Characteristics, Thrust 100%-75%, r = 6</pre>	166
130.	<pre>(C) Main Burner and Preburner Torch Steady-State Operating Characteristics, Thrust 100%-50%, r = 7</pre>	166
131.	<pre>(C) Main Burner and Preburner Torch Steady-State Operating Characteristics, Thrust 50%-20%, r = 5</pre>	167
132.	<pre>(C) Main Burner and Preburner Torch Steady-State Operating Characteristics, Thrust 50%-20%, r = 6</pre>	167
133.	(C) Main Burner and Preburner Torch Steady-State Operating Characteristics, Thrust $50\%-20\%$, r = 7	168
134.	(U) Corrected Efficiency Data as Functions of Mixture Ratio	100
135.	(U) 50K Performance Trends	171
136.	(U) 100% Thrust Combustion Performance	171
137.	(U) Main Burner Chamber Torch Igniter Assembly	174
138.	(U) Main Chamber Igniter Spark Plug	175
139.	(U) Main Burner and Preburner Chamber Bolt Limitations	175

xvi i CONFIDENTIAL

CONFIDENTIAL

LIST OF ILLUSTRATIONS (Continued)

Figure	Title	Page
140.	(U) Parametric Study Inlet Diameter vs Manifold Diameter	176
141.	(U) Conceptual Changes	177
142.	(U) Velocity Transition	178
143.	(U) Spraybar Effective Area vs Diameter	179
144.	(U) Material Cycle Life	180
145.	(U) Spraybar Injector Joint Thermal Gradient	181
146.	(U) Oxidizer Mass Flux vs Chamber Radius Unclassed Elements	182
147.	(U) Radial Mass Flow Unit Area Distribution	183
148.	(U) Oxidizer Droplet Size	184
149.	(U) Oxidizer Droplet Size Distribution	185
150.	(U) Shutdown Transient Faceplate and Support Structure	187
151.	(U) Faceplate Low Cycle Fatigue (Faceplate at 320°R) .	188
152.	(U) Faceplate Maximum Temperature vs Coolant Mass Flux	191
153.	(U) Estimated 0.2% Yield vs Temperature	191
154.	(U) Main Burner Igniter Concept No. 1	193
155.	(U) Main Burner Igniter Concept No. 2	194
15 6.	(U) Main Burner Igniter Concept No. 3	195
157.	(U) Main Burner Igniter Concept No. 4	195
158.	(U) Main Burner and Preburner Igniter Concept No. 5	196
159.	(U) Main Burner Igniter Concept No. 6	197
160.	(U) Location of Main Burner Chamber Assembly	201
161.	(U) Main Burner Chamber Assembly, Side View	202

xviii

CONFIDENTIAL (This page is Unclassified)

÷

tere.

Figure		Title	Page
162.	(U)	Main Burner Chamber Assembly, View Looking Aft	203
163.	(U)	Main Burner Chamber Assembly Outer Shell, Side View	204
164.	(U)	Forward Chamber Liner Coolant Metering	206
16 5.	(U)	Forward Chamber Liner Coolant Metering Installation, Side View	20 6
166.	(U)	Rear Chamber Liner Coolant Metering and Supply	207
167.	(U)	Rear Chamber Liner Coolant Metering, Side View	207
168.	(U)	Forward Chamber Liner, Zones 1 through 10	207
169.	(U)	Forward Chamber Liner, Zones 11 through 17	208
170.	(U)	Rear Chamber Liner, Zones 18 through 28	208
171.	(U)	Definition of Converging Portion of Combustion Chamber	209
172.	(U)	Typical Cylindrical Wafer	210
173.	(U)	Effect of Wafer Radial Thickness on Coolant Requirements for a Typical High Pressure Rocket Engine	211
174.	(U)	The Effect of Wafer Heat Exchanger Radial Thickness on Wafer OD Temperature	212
175.	(U)	Front Chamber Liner Typical Port for Igniter and Pressure Probe	212
176.	(U)	Location of Lands on Chamber Wafer	213
177.	(U)	Pulse Gun Installation in Igniter Boss	213
178.	(U)	Total Transpiration Coolant Flow	215
179.	(U)	Effect of Transpiration Coolant Flow on Specific Impulse	215
180.	(U)	Main Chamber Configuration	216
181.	(U)	Phase I Transpiration Cooled Liner Shows Inward Bowing Following Testing	217

a na sa sa 🛔

-

Figure	Title	Page
182.	(U) Cross Section of the Radially Restrained Thrust Chamber Liner	219
183.	(U) Flange Concepts	220
184.	(U) Main Burner Chamber Liner Coolant Schemes	220
185.	(U) Main Burner Chamber Liner Throat Schemes	221
186.	(U) Main Burner Chamber Liner Diverging Section	221
187.	(U) Orifice Schemes	222
188.	(U) Wall Temperature Variations for Cylindrical Section	224
189.	(U) Wall Temperature Variations for Throat Section	224
190.	(U) Wall Temperature Variations for Exit Section	225
191.	(U) Low-Cycle Fatigue Tests	227
192.	(U) Cycle Life Curves	228
193.	(U) Regeneratively Cooled Primary Nozzle Location	232
194.	(U) Regeneratively Cooled Primary Nozzle	234
195.	(U) Primary Nozzle Configuration	234
196.	(U) Total Thrust vs Axial Position (Maximum Operating Thrust)	235
197.	(U) Primary Nozzle Wall Static Pressure	235
198.	(U) Preburner Supply Heat Exchanger	2 36
199.	(U) Preburner-to-Transpiration Heat Exchanger Flange .	238
200.	(U) Transpiration Supply Heat Exchanger	239
201.	(U) Heat Balance Calculation	241
202.	(U) Regenerative Nozzle Film Coefficients for Various Hot Wall Temperatures	242
203.	(U) Subroutine Arrangement for Heat Exchanger	244

CONFIDENTIAL

Also in the automotive care interview.

~

ŧ

LIST OF ILLUSTRATIONS (Continued)

Figure	Title	Page
204.	(U) Thermal Low Cycle Fatigue Life for Different Materials at Various Temperatures	245
205.	(U) Material Yield Scrength Comparison	246
206.	(U) Low Cycle Fatigue Test Results	246
207.	(C) Predicted Thermal Gradient of Regenerative Nozzle Tube Nearest Throat (€ = 5.3)	248
208.	(U) Two-Position Nozzle and Translating Mechanism Location	250
209.	(U) Two-Position Nozzle Schematic	252
210.	(U) Two-Position Nozzle Design	252
211.	(U) Typical Nozzle Shell Configuration	253
212.	(U) Translating Mechanism	254
213.	(U) Drive Motor, Gearbox and Locking Device for Translating Mechanism	256
214.	(U) Ball Nut Gimbal and Support	257
215.	(U) Translating Mechanism Forward Supports	257
216.	(U) 50K Translatable Nozzle in Fixture	260
217.	(U) 50K Two-Position Nozzle Skirt Wall Pressure	260
218.	(U) 50K Two-Position Nozzle Performance	261
219.	(U) Translating Secondary Nozzle Test	262
220.	(U) Fluid Temperature vs Area Ratio	263
221.	(U) Heat Flux vs Area Ratio	263
222.	(U) Inside Film Coefficient vs Area Ratio	2 6 4
223.	(U) Coolant Passageway Area vs Area Ratio	264
224.	(U) Comparison of Thermal Fatigue Life	265
225.	(U) Nozzle Configuration Comparison	269

xxi

CONFIDENTIAL

وكالبهين بمحمر والالا حاليهم

LIST OF ILLUSTRATIONS (Continued)

Figure	Title	Page
226.	(U) Support Band Configurations Considered	271
227.	(U) Band Height vs Moment of Inertia for Several Configurations	271
228.	(U) Corrugation Fabricated by Die Forming	272
229.	(U) Corrugation Sample Panel	272
230.	(U) Integral Band Design Sample Panel	274
231.	(U) Hydrostatic Test Samples	274
232.	(U) Failed Hydrostatic Test Samples	275
233.	(U) Resistance Weld Test Samples	275
234.	(U) Thermal Fatigue Cycling Setup	277
235.	(U) ΔT vs Cycle Life for 0.005-inch Thick Corrugations	280
236.	(U) AT vs Cycle Life for 0.010-inch Thick Corrugations	2 80
237.	(U) Thermal Fatigue of Inconel 625 (AMS 5599) Tube and Corrugated Sheet	281
238.	(C) Two-Position Nozzle Wall Temperature Distribution at Inlet Region (€ = 5.3:1) of Nozzle, °R	2 83
239.	(U) Two-Position Nozzle Temperatures	284
240.	(U) Two-Position Nozzle Stress and Coolant Pressure	2 84
241.	(U) Two-Position Nozzle Geometry	285
242.	(U) Two-Position Nozzle Stiffening Band Locations	286
243.	(U) Flight Altitude Seal	286
244.	(U) Two-Position Nozzle Translating Mechanism	288
245.	(U) Ball Screw Shaft Load Distribution	289
246.	(U) Ball Bearing Screw Shaft Deflections	289

xxii

The address of the termination of the termination

;

the active fating

Figure		Title	Page
247.	(U)	XLR129-P-1 Two-Position Nozzle Loads	290
248.	(U)	Translating Mechanism Ring Gear and Support	291
249.	(U)	Translating System Hydraulic Control	294
250.	(U)	Fuel Low-Speed Inducer	300
251.	(U)	Fuel Low-Speed Inducer Location	301
252.	(U)	Fuel Low-Speed Inducer	303
253.	(U)	Fuel Low-Speed Inducer Thrust Piston and Front Bearing Arrangement	304
254.	(U)	Fuel Low-Speed Inducer Internal Flow System	305
255.	(U)	Fuel Low-Speed Inducer Turbine Stator Assembly	306
256.	(U)	Fuel Low-Speed Inducer Predicted Pressure Rise vs Flow	309
257.	(U)	Conceptual 250K Fuel Low-Speed Inducer	310
25 8.	(U)	Design and Off-Design Suction Capability, Various Inducers (H ₂ O or Equivalent)	311
259.	(U)	Optimum Incidence Various Inducers	312
260.	(U)	Effect of Solidity on Suction Capability	313
261.	(U)	Effect of Solidity on Overall Rotor Efficiency	313
262.	(U)	Effect of Blade Angle on Efficiency	314
263.	(U)	Effect of Blade Camber on Efficiency	315
264.	(U)	XLR129 Fuel Low-Speed Inducer	320
2 6 5.	(U)	XLR129 Liquid Oxygen Fuel Low-Speed Inducer	321
266.	(U)	XLR129 Fuel Low-Speed Inducer Predicted Head Coefficient vs Flow Coefficient	322
267.	(U)	XLR129 LO2 Low-Speed Inducer Predicted Heat Coefficient vs Flow Coefficient	323

Figure	Title	Page
268.	(U) XLR129 Fuel Low-Speed Inducer Off-Design Efficiency	323
269.	(U) XLR129 LO2 Low-Speed Inducer Off-Design Efficiency	324
270.	(U) XLR129 Fuel Low-Speed Inducer Turbine Design Point Optimization	332
271.	(U) XLR129 Fuel Low-Speed Inducer Turbine Design Point Optimization	333
272.	(U) XLR129 Fuel Low-Speed Inducer Turbine Design Point Optimization	334
273.	(U) Oxidizer Low-Speed Inducer	339
274.	(U) Oxidizer Low-Speed Inducer Location	340
275.	(U) Oxidizer Low-Speed Inducer	343
276.	(U) Oxidizer Low-Speed Inducer Rotor Assembly	344
277.	(U) Oxidizer Low-Speed Inducer Turbine and Variable Guide Vanes	345
278.	(U) Oxidizer Low-Speed Inducer Turbine Disk	346
279.	(U) Oxidizer Low-Speed Inducer Predicted Pressure Rise vs Flow	347
280.	(U) Conceptual 250K Oxidizer Low-Speed Inducer	349
281.	(U) Oxidizer Low-Speed Inducer Internal Pressure Loading on Blade and Root Static Pressure	350
282.	(U) 1.0 in. Chord Vane Flow Pattern Schematic	354
283.	(U) 1.5 in. Chord Vane Flow Pattern Schematic	355
284.	(U) Hydraulic Radial Inflow Turbine Channel Velocity Distribution (Relative)	357
285.	(U) Ω xidizer Low-Speed Inducer Turbine Disk Geometry .	359
286.	(U) Fuel Turbopump Assembly	362

L'ST OF ILLUSTRATIONS (Continued)

Figure	Title	Page
287.	(U) Fuel Turbopump Location	363
288.	(U) High-Speed Inducer	373
289.	(U) High-Speed Inducer Attachment	373
290.	(U) Front Bearing and Mount Assembly	290
291.	(U) Roller Bearing Configuration	375
292.	(U) Front Bearing Preload	375
293.	(U) Front Bearing Coolant Flowpath	376
294.	(U) Front Bearing Coolant Flow Rate	377
295.	(U) First-Stage Impeller Stresses and Deflections	378
296.	(U) Second-Stage Impeller Stresses and Deflections	379
29 7.	(U) Thrust Balance System	380
298.	(U) Thrust Piston Fluid Supply and Discharge	380
299.	(U) Rear Bearing and Mount Assembly	381
300.	(U) Rear Bearing Preioading	381
301.	(U) Rear Bearing Coolant Flowpath	382
302.	(U) Rear Bearing Coolant Flowrate	383
303.	(U) Turbine Section	384
304.	(U) Turbine Velocity Triangles	388
30 5.	(U) Turbine Inlet Duct	389
306.	(U) First-Stage Stator Installation	390
307.	(U) First-Stage Disk, Blade, and Shroud Installation .	392
308.	(U) Second-Stage Stator Installation	393
309.	(U) Second-Stage Stator Flow Guide	394
310.	(U) Second-Stage Stator Diaphragm Seal	394

1

LIST OF ILLUSTRATIONS (Continued)

Figure	Title	Page
311.	(U) Rotor Assembly Shaft Transition Section Isotherms	396
312.	(U) Turbine Discharge Turnaround Manifold	396
313.	(U) Turbine Coolant Flows and Pressure	399
314.	(U) Rotor Assembly	403
315.	(U) Rotor Assembly Coolant Flows	403
316.	(U) Fuel Turbopump Housings	404
317.	(U) Maximum Stresses and Deflections in Critical Areas of the Housings	406
318.	(U) Fuel Turbopump Predicted Pressure Rise vs Inlet Flow	407
319.	(U) HPH-50 Turbopump Rotor	408
320.	(U) HPH-50 Model No. 2 Pump Performance	408
321.	(U) 350K Pump Rotor	410
322.	(U) 350K Liquid Hydrogen Pump Operating Characteristics	410
323.	(U) Original 350K Fuel Pump and Drive Turbine Configuration	412
324.	(U) Final 350K Fuel Pump and Drive Turbine Configuration	413
32 5.	(U) Bearing Test Rig	415
326.	(U) 350K Fuel High-Speed Inducer, Nondimensionalized Head vs Nondimensionalized Flow	417
327.	(U) 350K Fuel Pump Suction Performance	417
328.	(U) 350K Fuel Pump lst-Stage, Stage Head Coefficient vs Flow Coefficient (LH ₂ Data)	418
329.	(U) 350K Fuel Pump lst-Stage Overall Efficiency vs Flow Coefficient (LH2 Data)	418

xxvi

Figure		Title	Page
330.	(U)	350K Fuel Pump 2nd-Stage Head Coefficient vs Flow Coefficient (LH ₂ Data)	419
331.	(U)	350K Fuel Pump 2nd-Stage Overall Efficiency vs Flow Coefficient (LH ₂ Data)	419
332.	(U)	Design and Off-Design Suction Capability, Various Inducers (H ₂ O or Equivalent)	420
333.	(U)	Incidence Angle vs Inlet Tip Blade Angle	421
334.	(U)	Design Parameters Optimized from Test Data	423
335.	(U)	Fuel Turbopump 1st-Stage Impeller Mean Flowpath	424
336.	(U)	Fuel Turbopump 2nd-Stage Impeller Mean Flowpath	425
337.	(U)	XLR129-P-1 Fuel Pump Relative Flow Area Distribution, 1st-Stage Impeller	425
338.	(U)	XLR129-P-1 Relative Flow Area Distribution, 2nd-Stage Impeller	426
339.	(U)	XLR129-P-1 Fuel Pump 2nd-Stage Diffuser Configuration	428
340.	(U)	XLR129-P-1 Fuel Pump 1st-Stage Head Coefficient vs Flow Coefficient	430
341.	(U)	XLR129-P-1 Fuel Pump 2nd-Stage Head Coefficient vs Flow Coefficient	430
342.	(U)	XLR129-P-1 Fuel Pump 1st-Stage Efficiency vs Flow Coefficient	431
343.	(U)	XLR129-P-1 Fuel Pump 2nd-Stage Efficiency vs Flow Coefficient	431
344.	(U)	Fuel Turbopump Predicted Thrust Unbalance and Thrust Piston Capability vs Engine Thrust for Various Engine Mixture Ratios	432
34 5.	(U)	Axial Thrust Change vs Stage Diameter Ratio	432
346.	(U)	Bleed Flows Expressed as a Percentage of Turbine Inlet Flow	434

LIST OF ILLUSTRATIONS (Continued)

Figure	Title	Page
347.	(U) Turbine Efficiency Change vs Mean Diameter	435
348.	(U) Obtaining Peak Efficiency by Varying Annulus	436
349.	(U) Second-Stage Turbine Efficiency Change vs Annular Area	436
350.	(U) Airfoil Selection by Varying Load Coefficient	437
351.	(U) First-Stage Vane Change in Foil Efficiency vs Load Coefficient	439
352.	(U) First-Stage Vane Change in Foil Efficiency vs Number of Airfoils with Constant Chord	439
353.	(U) First-Stage Blade Change in Foil Efficiency vs Load Coefficient	440
354.	(U) Second-Stage Vane Change in Foil Efficiency vs Load Coefficient	441
355.	(U) Second-Stage Vane Efficiency Change vs Number of Airfoils with Constant Chord	442
356.	(U) Second-Stage Blade Change in Foil Efficiency vs Load Coefficient	443
3 57.	(U) XLR129-P-1 Fuel Pump Turbine Blade Root Design	447
3 5 8 .	(U) XLR129-P-1 Fuel Pump Turbine Blade Resonance Diagram	448
3 59.	(U) Front Bearing Loading	449
360.	(U) Rear Bearing Loading	452
361.	(U) Oxidizer Turbopump Assembly	453
362.	(U) Oxidizer Turbopump Location	454
363.	(U) Oxidizer Turbopump High-Speed Inducer	463
364.	(U) Oxidizer Turbopump High-Speed Inducer Stresses	464
365.	(U) Oxidizer Turbopump Impeller	465
366.	(U) Oxidizer Turbopump Impeller Stresses	465

xxviii

Figure		Title	Page
367.	(U)	Oxidizer Turbopump Bearings and Bearing Mounts	467
368.	(U)	Oxidizer Turbopump Front Bearing Coolant Flow	468
369.	(U)	Oxidizer Turbopump Rear Bearing Coolant Flow	469
370.	(U)	Oxidizer Turbopump Thrust Balance System	469
371.	(U)	Oxidizer Turbopump Thrust Piston Clearance and Flow Rate	470
372.	(U)	Oxidizer Turbopump Thrust Piston Deflection	471
373.	(U)	Oxidizer Turbopump Seal Package	471
374.	(U)	Oxidizer Turbopump Bellows-Actuated Lift-Off Seal .	472
375.	(U)	Oxidizer Turbopump Turbine	474
376.	(U)	Oxidiz: Turbopump Turbine Velocity Triangles	478
377.	(U)	Oxidizer Turbopump Turbine Inlet Duct	479
378.	(U)	Oxidizer Turbopump Turbine Stages and Exhaust System	480
379.	(U)	Oxidizer Turbopump Turbine Hub and Tie Bolt Temperature Profile	483
380.	(U)	Oxidizer Turbopump Turnaround Manifold and Exit Diffuser Temperatures	484
381.	(U)	Oxidizer Turbopump Turbine Coolant Flow System	486
382.	(U)	Oxidizer Turbopump Turbine Disk Coolant Flow	486
383.	(U)	Oxidizer Turbopump Turbine Support Coolant Flow	487
384.	(U)	Oxidizer Turbopump Inlet Housing	488
385.	(U)	Oxidizer Turbopump Center Housing	489
386.	(Մ)	Oxidizer Turbopump Housing Stresses	490
387.	(U)	Oxidizer Turbopump Performance Map	491
388.	(U)	HPO-50 Pump Performance	492

Figure		Title	Page
389.	(U)	350K Oxidizer Turbopump Rotor Assembly	493
390.	(U)	350K Oxidizer Turbopump Demonstrated Heat-Flow Performance Map	494
391.	(U)	350K Oxidizer Turbopump Demonstrated Pressure Rise vs Flow	496
392.	(U)	Head Degradation in 350K Engine Oxidizer Pump	496
393.	(U)	Overall Stage Efficiency of 350K Oxidizer Turbopump	497
394.	(U)	Relative Flow Area Distribution vs Flowpath Length of the 350K Oxidizer Turbopump	498
395.	(IJ)	Tip Streamline Static Head vs Flowpath Length for Original 350K Oxidizer Turbopump Configuration	499
396.	(U)	350K Oxidizer Turbopump Inducer Head-Flow Coefficient Map	499
397.	(U)	Cavitation Performance of 350K Oxidizer Turbopump .	500
398.	(U)	350K Oxidizer Turbopump Diffuser Configuration	501
399.	(U)	Collection System Pressure Rise Characteristics of 350K Oxidizer Turbopump	502
400.	(U)	Pressure Recovery Characteristics of a Collection System Test Rig	502
401.	(U)	Impeller Contour Comparison	503
402.	(U)	350K Oxidizer Turbopump Low-Speed Data Match of Head Coefficient and Flow Coefficient	504
403.	(U)	Design and Off-Design Suction Capability, Various Inducers (H ₂ O or Equivalent)	506
404.	(U)	Incidence Angle at Maximum Suction Specific Speed vs Inlet Tip Blade Angle for Various	507
405.	(U)	XLR129 Oxidizer Pump Flow Area Distribution	507

Figure		Title	Page
406.	(U)	Theoretical Static Head Distribution for XLR129 Oxidizer Turbopump	508
407.	(U)	Relative Velocity for XLR129 Oxidizer Turbopump Flowpath	509
408.	(U)	Design Parameters Optimized from Test Data	509
409.	(U)	XLR129 Oxidizer Turbopump Diffuser Configuration .	510
410.	(U)	XLR129 Oxidizer Turbopump Predicted Head Coefficient vs Flow Coefficient	512
411.	(U)	XLR129 Oxidizer Turbopump Predicted Stage Efficiency vs Flow Coefficient Map	512
412.	(U)	Net Axial Thrust vs Engine Thrust Level	513
413.	(U)	XLR129 Oxidizer Turbopump Turbine Bleed Flow Expressed as Percent of Turbine Inlet Flow	514
414.	(U)	Change in Turbine Efficiency vs Percent Change in Annulus Area	515
415.	(U)	Change in Load Coefficient vs Airfoil Efficiency .	516
416.	(U)	Housing Material Comparison	519
417.	(U)	Demonstrator Engine Layout	523
418.	(U)	Preburner Oxidizer Valve Location	532
419.	(U)	Preburner $\operatorname{Oxidizer}$ Value Control Characteristics .	533
420.	(U)	Preburner Oxidizer Valve Disassembled	535
421.	(U)	Preburner Oxidizer Valve Layout	536
422.	(U)	Preburner Oxidizer Valve Port Contour	537
423.	(U)	Preburner Dome Cross Section	538
424.	(U)	Secondary Oxidizer Flow Passage	538
425.	(U)	Preburner Oxidizer Valve and Injector Flow Passage Schematic	539

and the state of the second second

LIST OF ILLUSTRATIONS (Continued)

Figure	Title	Page
426.	(U) Preburner Oxidizer Valve Area Error/Positional Error vs Valve Stroke	540
427.	(U) Preburner Oxidizer Valve Effective Area vs Stroke	541
428.	(U) Flow Divider Valve	542
429.	(U) Upper Piston Rings Analyzed	543
430.	(U) Lower Piston Rings Analyzed	543
431.	(U) Nomenclature Explanation and Definition	545
432.	(U) Actuation Force vs Inlet Pressure	548
433.	(U) Preburner Dome Structural Analysis	548
434.	(U) Translating Shaft Lip Seal Package	549
435.	(U) Balance Piston Lip Seal Package and Upper Piston Ring	549
436.	(U) Lower Piston Ring Installation	550
437.	(U) Preburner Fuel Valve	554
438.	(U) Preburner Fuel Valve Operating Requirement	555
439.	(U) Hoop Seal Cross Section	556
440.	(U) Shaft Lip Seal	557
441.	(U) Main Flow Effective Area Schedule	558
442.	(U) Coolant Tapoff Area Schedule	558
443.	(U) Dynamic Torque Coefficient vs Shaft Angular Position	559
444.	(U) Shutoff Seal Torque	55 9
445.	(U) Internal Sleeve Valve (Out Flow) Candidate	561
446.	(U) External Sleeve Valve Candidate	562
447.	(U) Internal Sleeve Valve (Fixed Ports) Candidate	562

xxxii

A - A - A - A - A - A

and the second s

. . 🏠

Figure		Title	Page
448.	(U)	Internal Sleeve Valve (Movable Ports) Candidate	563
449.	(U)	Sleeve Valve Diameter vs Stroke	563
400.	(U)	Dynamic Force vs Thrust (Internal Sleeve Valve - Reverse Flow)	564
451.	(U)	Dynamic Force vs Thrust (External Sleeve Valve)	565
452.	(U)	Dynamic Force vs Thrust (Internal Sleeve Valve - Fixed Ports)	565
453.	(Ľ)	Dynamic Force vs Thrust (Internal Sleeve Valve - Movable Ports)	566
434.	(U)	Dynamic Force Comparison of Sleeve Valve Candidates	566
433.	(U)	Pintle Valve Candidate	567
456.	(U)	Maximum Stroke vs Contour Angle (Pintle Valve)	568
457.	(U)	Dynamic Force vs Thrust (Pintle Valve)	56 8
458.	(U)	Inverted Pintle Valve Candidate	569
4∋ 9.	(U)	Throat Size Selection (Inverted Pintle)	569
4ó0.	(U)	Parametric Sizing for Inverted Pintle	570
461.	(U)	Butterfly Valve Candidate	571
462.	(Ľ)	Angular Position vs Throat Diameter (Butterfly Valve)	571
463.	(U)	Dynamic Torque vs Thrust (Butterfly Valve)	572
464.	(U)	Effective Area vs Angular Position (Butterfly Valve)	572
465.	(U)	Area Error vs Angular Position (Butterfly Valve) .	573
465.	(U)	Preburner Fuel Valve Installation Schematic	573
467 .	(U)	Main Chamber Oxidizer Valve	579
468.	(じ)	Main Chamber Oxidizer Control Valve Operating Requirements	582

Figur	e	Title	Page
469.	(U)	Hoop Seal Assembly Cross Section	583
470.	(U)	Force, Load and Stress Anslysis Summary	584
471.	(U)	Shaft Lip Seals	585
472.	(U)	Flange Stress Anslysis Summary	586
473.	(U)	Valve Pressure Drop vs Thrust	587
474.	(U)	Valve Effective Area vs Shaft Angle	588
475.	(U)	Valve Area Error per Degree Shaft Angle	588
476.	(U)	Main Chamber Oxidizer Valve Shutoff Seal Cross Section Rig F-33466-11	590
477.	(U)	Main Chamber Oxidizer Valve Shutoff Seal Overall View Rig F-33446-11	590
478.	(U)	Main Chamber Oxidizer Valve Shutoff Seal Element, Rig F-33466-11	591
479.	(U)	Revised Shaft Lip Seal Design	591
480.	(U)	Cam-Actuated Shutoff Seal	592
481.	(U)	Cam-Actuated Seal Parts Layout	593
482.	(U)	Shutoff Seal Leakage vs Shutoff Cycles, Rig F-33466-11 Recorded 15 Minutes after Valve Closed	594
483.	(U)	Seal Leakage vs Time. Rig F-33466-11	595
484.	(U)	Disk Seal Leakage vs Shaft Angle, Rig F-33466-11.	595
485.	(U)	Post-Test Leakage, Rig F-33466-11	596
486.	(U)	Hoop Seal Wear, Rig F-33466-11	597
487.	(U)	Disk Seal Post-Test Condition, Rig F-33466-11	597
488.	(U)	Water Calibration Results, Rig F-33466-11	598
489.	(U)	Hoop Seal Condition, Post-Test, Rig F-33466-11	599
490.	(U)	Hoop Seal Element Failure, Rig F-33466-11	599

教育とない

Figure		Title	Page
491.	(U)	Possible Cavitation Damage to Hoop Seal, Rig F-33466-11	600
492.	(U)	Post-Test, Disk Sealing Surface Common Rig F-33466-11	600
493.	(U)	Post-Test Teardown of Main Chamber Oxidizer Valve, Rig F-33466-11	601
494.	(U)	Shutoff Seal Leakage vs Percent of Test Goal, Rig F-35106-8	603
495.	(U)	Shutoff Seal Leakage vs Time, Rig F-35106-8	604
496.	(U)	Shutoff Seal Leakage vs Shaft Position, Rig F-35106-8	604
497.	(U)	Shutoff Seal Leakage vs Shutoff Cycles, Rig F-35106-8	605
498.	(U)	Shutoff Seal Wear, Rig F-35106-8	606
499.	(U)	Disk Surface Post-Test Condition, Rig F-35106-8	606
5 00.	(U)	Water Calibration Results, Rig F-35106-8	607
501.	(U)	Seal Element Damage After Water Calibration, Rig F-35106-8	607
502.	(U)	Damaged Seal Element Rig F-35106-8	608
5 03.	(U)	Location of Seal Damage Area	608
504.	(U)	Support Area Crack, Rig F-35106-8	609
5 0 5.	(U)	Disk Seal Surface, Rig F-35106-8	609
50 6 .	(U)	Crack in Cam Drive, Rig F-35106-8	610
507.	(U)	Post-Test Parts Layout, Rig F-35106-8	611
508.	(U)	Two-Position Nozzle Coolant Supply System, Extended Position	613
5 09.	(U)	Two-Position Nozzle Coolant Supply System, Control Value and Venturi	614

A REAL PROPERTY AND A REAL

Figure		Title	Page
510.	(U)	Two-Position Nozzle Coolant Supply System, Coolant Flow	615
511.	(U)	Two-Position Nozzle Choked Venturi Configuration .	616
512.	(U)	Triangular Transfer Tube Assembly Coolant Inlet Trunnion	617
513.	(U)	Triangular Transfer Tube Assembly Closed-End Trunnion	617
514.	(U)	Single Transfer Tube Assembly Ball Joint	618
515.	(U)	Single Transfer Tube Assembly Ball Joint Passages and Shaft Retention	618
51 6.	(U)	Two-Position Nozzle Venturi Flow, r = 7	619
517.	(Ľ)	Propellant Vent Valve	624
518.	(U)	Shutoff Seal	625
5 19.	(U)	Poppet Valve	627
520.	(U)	Ball Valve	627
521.	(U)	Blade Valve	628
522.	(Ľ)	XLR129-P-1 Helium System	632
523.	(U)	Helium System Envelope	636
524.	(Ľ)	Helium System Mission Definition	637
525.	(U)	Inverted C-Ring Detail Part, Fit and Installed Shape	640
526.	(U)	Static Seal Rig	641
527.	(U)	Flange Rework, Static Seal Test Rig	642
528.	(Ľ)	Pivot Ring Seal Configuration	642
52 9.	(U)	Lead Plated Pivot Ring Static Seal Rig Test Results, Rig 35120-33	643
530.	(೮)	Toroidal-Segment Seal Test Results, Rig 35120-28	644

 $\mathcal{M}_{\mathcal{M}}$

LIST OF ILLUSTRATIONS (Continued)

Figure	Title	Page
531.	(U) Toroidal-Segment Static Seal	646
532.	(U) Sealing Surfaces on Typical Installation	647
533.	(U) Radial and Axial Force Computation	647
534.	(U) Coupling Configuration	648
535.	(U) Predicted Coupling Deflection of Seal vs Weight	649
536.	(U) Finite Element Computer Program Predictions	651
5 37.	(U) Axial Deflection at ID of Flange, Rig 35120-3	652
5 38.	(U) Comparison of Predicted and Measured Stresses on OD Wall, Rig 35120-3	653
539.	(U) Static Seal Rig Zero Deflection Flanges	654
5 40 .	(U) Static Seal Rig 0.002-Inch Deflection Flanges	655
541.	(U) Static Seal Rig Flange Weigh t vs Seal Point Deflection	656
542.	(U) Static Seal Rig Deflection Compensation Schemes	657
54 3.	(U) Engineering Mockup, Two-Position Nozzle Retracted - 12-Inch Section Only (Sheet 1)	660
5 44.	(U) Engineering Mockup, Two-Position Nozzle Retracted - 12-Inch Section Only (Sheet 2)	660
545.	(U) Engineering Mockup, Two-Position Nozzle Retracted - 12-Inch Section Only (Sheet 3)	661
546.	(U) Engineering Mockup (Sheet 4)	661
547.	(U) Engineering Mockup (Sheet 5)	662
548.	(U) Engineering Mockup (Sheet 6)	662
549.	(U) Engineering Mockup (Sheet 7)	663
550.	(U) Engineering Mockup (Sheet 8)	663
551.	(U) Preburner Fuel Line	6 70

xxxvii

الاردار المطعور

LIST OF ILLUSTRATIONS (Concluded)

Figure	Title	Pag	e
5 52 .	(U) Preburner Fuel Line Interface and Angular Mismatch Dimensio	e Moment vs Linear ons67	1
55 3 .	(U) Main Fuel Pump Discharge Plum	mbing67	6
554.	(U) General Arrangement of Oxidiz Lines with Oxidizer Low-Speed	zer Pump Discharge d Inducer 67	8
555.	(U) Schematic of Engine Looking A	Aft	1
556.	(U) Main Burner Oxidizer Supply .	68	4
557.	(U) Fuel Pump Inlet Line	68	7
55 8 .	(U) Oxidizer Low-Speed Inducer-to	o-Oxidizer Turbopump . 68	9
55 9 .	(U) Fuel Low-Speed Inducer Turbin	ne Drive Fuel Supply . 69	0
5 60.	(U) Primary Nozzle Fuel Supply Li	ine 69	2
561.	(U) Main Chamber Coolant Supply I	Line	4
5 6 2.	(U) Connector and Seal	69	6
563.	(U) Bobbin Seal Assembly	· · · · · · · · · · · · · 69	6
564.	(U) Inconel 718 High Pressure Bos	ss Connector 69	7
565.	(U) Alternative Boss Connector De	esign 69	8
5 66.	(U) Line Connectors and Bosses .	69	9
3 67.	(U) Tube Fittings	70)
568.	(U) Plumbing Road Map	70	1
569.	(U) Axial Load Trace and Radial L 3/8-inch Annealed Inconel 718	Load Increments for 3 Seal (Specimen	
570 -	(C) Fittings Installation Torque		•
571	(II) Nut Incorol 718 Fully Heat	Trantod 71:	> 7
372	(I) Plain Flance Incorol 719 P	illy West Treated 71	, D
572.	(U) Threaded Discover 18, 10	Fully heat freated 718	3
5/3.	(U) Inreaded Flange, Inconel 718,	, Fully Heat Treated . 719	,
574.	(U) Seal, Annealed, Inconel 718.)

xxxviii

s.,

L

LIST OF TABLES

Table	2	Title	Page
I	(U)	Demonstrator Engine Characteristics	1
11	(U)	Demonstrator Engine Operating Characteristics, Booster	25
III	(U)	Demonstrator Engine Estimated Weight	38
IV	(U)	Cycle Definition Procedure	42
v	(U)	XLR129-P-1 Design Trades	48
VI	(U)	Summary of Burn Damage	83
VII	(U)	Summary of Measured Parameterd During Preburner Injector Testing	86
VIII	(U)	Summary of Calculated Parameters During Preburner Injector Testing	87
IX	(U)	Test Matrix	88
x	(U)	Dimensional Characteristics of Elements Tested	88
XI	(U)	Test Matrix Results	89
XII	(U)	Typical Igniter Steady-State Performance for Various Propellant Tap-Off Locations	99
XIII	(じ)	Critical Design Requirements for Ignition System Electrical Exciter	101
XIV	(U)	Transition Case Weight Breakdown	127
xv	(U)	Truncated Sphere Stress Data (400 psig Internal Pressure)	131
XVI	(U)	Intersecting Spheres Proportional Limit Test Data	133
XVII	(U)	Calculated Stresses (Allowable Based on 90% Waspaloy Data)	137
XVIII	(じ)	Hand-Welded Specimen Heat Treatment	140
XIX	(U)	Hand-Welded Specimen Tensile Test Results	140
xx	(U)	Machine-Welded Specimen Test Results	141

LIST OF TABLES (Continued)

Table	Title	Page
XXI	(U) Hand "T" Weld Specimen Testing Results	142
XXII	(U) Cooled Duct vs Uncooled Duct Weight Study	143
XXIII	(U) Estimated Mass Flow Distribution at Turbine Inlets	148
XXIV	(U) Results of Rigimesh Tensile Tests	190
XXV	(U) Chamber Internal Geometry	211
XXVI	(U) Comparison of Phase I, Contract AF04(611)-11401 and Current Design Schemes	226
XXVII	<pre>(U) Primary Nozzle Operating Conditions at Design Point</pre>	240
XXVIII	(U) Translating System Weights	258
XXVIV	(U) Two-Position Nozzle Heat Exchanger Operating Conditions	258
XXIX	(U) Comparison of Material Candidates	266
XXX	(U) Properties of Inconel 625 (AMS 5599)	266
IXXX	(U) Configuration Study	267
XXXII	(U) Thermal Fatigue Cycling Test Results	278
XXXIII	(U) Clearance Data	287
XXXIV	(U) Gear Weight Comparison Data	291
XXXV	(U) Gear Design Data	292
XXXVI	(U) Gear Design Data	293
XXXVII	(U) Translating Mechanism Lock Design Data	295
XXXVIII	(U) Ball Nut Gimbal Design Loads	296
XXXIX	(U) Fuel Low-Speed Inducer Operating Conditions at Design Point	302
XL	(U) General Selection Criteria	318
XLI	(U) Fuel Low-Speed Inducer Non-Cavitating Hydraulic Design Parameters	325

ł

No. of the second se

LIST OF TABLES (Continued)

Table		Title	Page
XLII	(U)	XLR-129 Oxidizer Low-Speed Inducer Non-Cavitating Hydraulic Design Parameters	327
XLIII	(U)	Stress Comparison of XLR-129 Fuel Low-Speed Inducer Turbine and the RL10 Turbine	337
XLIV	(U)	Operating Point Conditions	341
XLV	(U)	Vane-Streamline Deviation	354
XLVI	(U)	Oxidizer Low-Speed Inducer Turbine Rotor Blade Stress Analysis	358
XLVII	(U)	Fuel Turbopump Design Point Conditions	364
XLVIII	(C)	Hydrodynamic Design Parameters 100% Thrust, $r = 5$.	365
XLIX	(C)	Turbine Aerodynamics at 100% Thrust and $r = 5 \dots$	385
L	(C)	Thermodynamic Information for Blades and Vanes at 100% Thrust and $r = 5$	386
LI	(U)	Liquid Hydrogen Pump Operational Characteristics	409
1.11	(U)	Oxidizer Turbopump Operating Conditions at Design Point	456
LIII	(U)	Hydraulic Design Parameters	457
LIV	(U)	Mounting Effects on Oxidizer Turbopump Bearings	467
LV	(U)	Front Bearing Coolant Flow	468
LVI	(U)	Rear Bearing Coolant Flow	46 9
LVII	(C)	Turbine Aerodynamics at 100% Thrust and $r = 7$	475
LVIII	(C)	Thermodynamic Information for Blades and Vanes at 100% Thrust and r = 7	476
LIX	(U)	Calculated and Allowable 2nd-Stage Turbine Blade and Disk Stresses	482
LX	(U)	Oxidizer Turbopump Turbine Cooland Flow System Flow Rates, Pressures, Temperatures, and Orifice Sizes	485

مادينا بتوجير بترجيل الالاران

من به ۲۵ (مدید ۲۰ می دو می**شد**ه می

.

LIST OF TABLES (Concluded)

Table		Title	Page
LXI	(U)	Liquid Oxygen Pump Operational Characteristics	493
LXII	(U)	Percentage Change from Unbalanced Ring	544
LXIII	(U)	Nomenclature Definition	54 6
LXIV	(U)	Comparison of New and Tested Piston Rings	54 6
LXV	(U)	Weight and Power	575
LXVI	(U)	Valve Rating Based on Single Inlets Unbalanced Actuation Shafts	57 6
LXVII	(U)	Valve Rating Based on Single Inlets and Balanced Actuation Shafts	57 7
LXVIII	(U)	Valve Rating on Double Inlets (Where Applicable) and Balanced Actuation Shafts	57 8
LXIX	(U)	Relative Development Ranking	629
LXX	(U)	Solenoid Valve Description	635
LXXI	(U)	XLR129 Helium System Solenoid Valve Failure Analysis	638
LXXII	(U)	Applicable Commercial Seals	658
LXXIII	(U)	Flange Design Summary	673
LXXIV	(U)	Bolt Loads and Stress of Studs Used at Collector to Lox Inducer Flange	679
LXXV	(U)	Tube Analysis Input and Results	680
LXXVI	(U)	Total Tolerance Stackup	682
LXXVII	(U)	Computer Design Results	685
LXXVIII	(U)	Fuel Small Lines Summary	703
LXXIX	(U)	Oxidizer Small Lines Summary	707
LXXX	(U)	Helium Small Lines Summary	70 8
LXXXI	(U)	Load Test Results for 3/8- and 1-in. Seals Machined from Annealed Inconel 718	714

.

the state of the state of the same the state of the state

•

and the support

E.

ž

LIST OF SYMBOLS

Acd	Effective Flow Area, in. ²
A S	Slot Area, in. ²
A	Element Area, in. ²
A	Inlet flow area excluding blockage, in. ²
^A 2	Exit flow area excluding blockage, in. ²
^B x	Blade Angle Distribution
⁸ 2	Exit blade height, in.
С	Radial clearance, in.
c _l	Coefficient of Lift
C _{M1}	Inlet meridional velocity, fps
C _{M2}	Exit meridional velocity, fps
° _r	Clearance, in.
c _{U1}	Inlet tangential velocity, fps
C _{U2}	Exit tangential velocity, fps
c ₁	Inlet absolute velocity, fps
с ₂	Exit absolute velocity, fps
с ₃	Absolute Volute Velocity, fps

LIST OF SYMBOLS (Continued)

Dl	Diffuser Inlet Diameter, in.
^D 2	Diffuser Exit Diameter, in.
D _{lh}	Inlet hub diameter, in.
^D 2h	Exit hub diameter, in.
D _{IM}	Inlet mean diameter, in.
^D 2M	Exit mean diameter, in.
D _{IT}	Inlet tip diameter, in.
^D 2 T	Exit tip diameter, in.
i	Leading Edge Incidence, deg
I _s	Specific Impulse (instantaneous), $lb_{f} - sec/lb_{m}$
l/R	Diffuser Length to Inlet Radius Ratio
l _×	Mean axial length, in. tip
м	Momentum, Ft-lb/sec
N	Speed, rpm
S	Specific speed
NPSH Fluid	Net positive suction head in fluid _{LH2} ft required
NPSH _{H2} O	Net positive suction head in H_2^0 ft required
P	Pressure, psi
P c	Chamber Pressure (throat total), psia

.

書き とうれい。

LIST OF SYMBOLS (Continued)

P _S	Static Pressure, psi
PVAP	Vapor pressure, psi/ft
Pl	Intet pressure, psi total required
Q ₁	Flow rate at inlet/exit, gpm
R _c	Cutwater Radius, in.
R _{c3}	Velocity Correction Factor, C ₃ /C ₂
r	Mixture Ratio (oxidizer to final) by weight
S	Suction specific speed
S _{Fluid}	Suction specific speed in fluid _{LH2} capability
^s н ₂ о	Suction specific speed in H ₂ O capability
SMD	Sauter Mean Diameter, in.
t _c	Cutwater Thickness, in.
^t h	Hub Thickness, in.
T _{H1}	Inlet hub blade thickness, in.
^т н2	Exit hub blade thickness, in.
t _t	Tip Thickness, in.
T _{T1}	Inlet tip blade thickness, in.
T _{T2}	Exit tip blade thickness, in.
TSH	Thermodynamic suppression head, fr
T ₁	Inlet temp., °R

LIST OF SYMBOLS (Continued)

^U IT	Inlet blade tip speed, fps
^U 2m	Exit mean blade speed, fps
ŵ	Flow rate, 1b/sec
ŵc	Cooling Flowrate, lb/sec
x	Number of Diffusers
Ζ.	Number of Blades
a	Surface Tension
a ₂	Absolute Fluid Angle, deg
₿lh	Inlet hub blade angle, degrees
₿2h	Exit hub blade angle, degrees
31M	Inlet mean blade angle, degrees
Ø2M	Exit mean blade angle, degrees
BIT	Inlet tip blade angle, degrees
<i>3</i> 2T	Exit tip blade angle, degrees
β 3	Volute Width, in.
ън _{тр}	Total head rise overall, ft
¢τ _P	Total Head Coefficient
Δ _P _T _P	Total pressure rise, overall, psi
Ан _{Sp}	Static head rise overall, ft
¢s _P	Static Head Coefficient
ΔP _S _P	Static pressure rise overall, psi

4

.

ſ

	LIST OF SYMBOLS (Concluded)
۲ ₁ нد	Static head rise rotor, ft
¢s _I	Rotor Head Coefficient
2 ^P T	Total pressure rise rotor, psi
нد 1	Static head rise rotor, ft
∠ _P s ^I	Static pressure rise rotor, psi
ð	Specific Gravity
ŧ	Nozzle Area Ratio
η	Efficiency, % overall
η.	(Average Temperature/Ideal Temperature) x 100
η ₁₀	Engine Impulse Efficiency, percent
θ	Camber, deg
20	Diffuser Included Angle, deg
` 1	Inlet Hub-Tip Diameter Ratio
`2	Exit Hub-Tip Diameter Ratio
щ	Viscosity, lb-sec/ft ²
ρ	Density, slug/ft ³ , lb-sec/ft ⁴
ρ	Inlet/exit density, lb/ft ³
σ	solidity
<i>Φ</i> it	Inlet Tip Flow Coefficient
• _{2M}	Flow coeff. I mean exit diameter
Φ _{lT}	Flow coeff. 4 inlet tip diameter
¥	Head Coefficient

SECTION I

200

ł

1

																											ra	ge
A. B.	General Program	 Ta sks	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1 3	ļ

SECTION I

A. GENERAL

and the second

(U) The Air Force XLR129-P-1 Reusable Rocket Engine Program is an Advanced Development Program that covers a 54-month period starting 6 November 1967 and ending 6 May 1972. The overall objective of this program is to demonstrate the performance and mechanical integrity of a 250K, oxygenhydrogen, reusable rocket engine having characteristics outlined in table I.

(U) Table I. Demonstrator Engine Characteristics

Nominal Thrust	250,000-1b vacuum thrust with area ratio of 166:1 244,000-1b vacuum thrust with area ratio of 75:1 209,000-1b sea level thrust with area ratio of 35:1
Minimum Delivered Specific Impulse Efficiency	96% of theoretical shifting $\mathbf{I_S}$ at nominal thrust; 94% of theoretical shifting $\mathbf{I_S}$ during throttling
Throttling Range	Continuous from 100 to 20% of nominal thrust over the mixture ratio range
Overall Mixture Ratio Range	Engine operation from 5.0:1 to 7.0:1
Rated Chamber Pressure	2740 psia CONFIDENTIAL
Engine Weight (with 75:l nozzle)	3520 lb with flight-type actuators and engine command unit 3380 lb without flight-type actuators and engine command unit
Expansion Ratio	Two-position booster-type nozzle with area ratios of 35:1 and 75:1
Durability	10 hours time between overhauls, 100 reuses, 300 starts, 300 thermal cycles, 10,000 valve cycles
Single Continuous Run Duration	Capability from 10 seconds to 600 seconds
Engine Starts	Multiple restart at sea level or altitude
Thrust Vector Control	Amplitude: ±7 deg Rate: 30 deg/sec Acceleration: 30 rad/sec ²

CONFIDENTIAL

(U) Table I.	Demonstrator Engine Characteristics (Continued)
Control Capability	±3% accuracy in thrust and mixture ratio at nominal thrust. Excursions from extreme to extreme in thrust and mixture ratio within 5 seconds.
Propellant Conditions	 LO₂: 16 ft NPSH from 1 atmosphere boiling temperature to 180°R LH₂: 60 ft NPSH from 1 atmosphere boiling temperature to 45°R
Environmental Conditions	Sea level to vacuum conditions Combined acceleration: 10 g axial with 2 g transverse, 6.5 g axial with 3 g transverse, 3 g axial with 6 g transverse COMFIDENTIAL
Engine/Vehicle	The engine will receive no external power, with the exception of normal electrical power and 1500-psia helium from the vehicle

(U) The XLR129-P-1 demonstrator engine program schedule is shown in figure 1. The program has been divided into five tasks. Task 1 which has already been completed, generated test and analytical data to complete the necessary technology to design the engine and components. During task 2, all the components and the demonstrator engine were designed. This milestone report describes the results of work accomplished during task 2 and presents the mechanical description, operating characteristics, and design approach of each major component and the demonstrator engine. During task 3, components will be fabricated and tested to qualify them for engine use. Task 4 will be the integration of components into the demonstrator engine and testing of the demonstrator engine. A flight engine will be defined in task 5.

(U) Figure 1. XLR129-P-1 Demonstrator Engine Program Schedule

8. PROGRAM TASKS

(U) The entire program consists of five tasks and specific subtasks as follows;

Task I - Supporting Data and Analysis

Subtasks

- 1.1 Fixed Fuel Area Preburner Injector Evaluation
- 1.2 Roller Bearing Durability Tests
- 1.3 Pump Inlet Evaluation
- 1.4 Nozzle Fabrication Investigation
- 1.5 Controls Component Test

Task 2 - Design

Subtasks

2.1 - Preburner Injector

- 2.2 Main Burner Injector
- 2.3 Nozzles
- 2.4 Main Burner Chamber
- 2.5 Transition Case
- 2.6 Fuel Turbopump
- 2.7 Oxidizer Turbopump
- 2.8 Fuel Low-Speed Inducer
- 2.9 Oxidizer Low-Speed Inducer

2.10 - Control System

Task 3 - Component Development

Subtasks

- 3.1 Preburner Injector
- 3.2 Mair. Burner Injector
- 3.3 Nozzles

ŧ

3.4 - Main Burner Chamber

Subtasks

- 3.5 Transition Case
- 3.6 Fuel Turbopump
- 3.7 Oxidizer Turbopump
- 3.8 Fuel Low-Speed Inducer
- 3.9 Oxidizer Low-Speed Inducer
- 3.10- Control System

Task 4 - Engine Integration and Demonstration

Task 5 - Flight Engine Definition

UNCLASSIFIED

4

SECTION II SUMMARY

territor in the

The summer of the second second second

「ちちちないたちの

Page

Demonstrator Engine		•	•	•	•		•	•	•	•			•		•		•	•		5
Preburner Injector		•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	٠		٠	7
Transition Case	•	•					•	•	•		•	•			•	•	•	•		9
Main Burner Injector .	•	•	•	•	•	•	•	•	•	•			•		•	•	•	•	•	10
Main Burner Chamber	•	•		•		•			•		•	•		٠	•	•	•	•		11
Primary Nozzle	•			•		•		•	•	٠			•			•	•	•		12
Two-Position Nozzle and	T	rai	ns)	la	tiı	ng	Me	ec)	141	nis	310	•		•	•	•	•	•	•	13
Low-Speed Inducer		•	•	•	•	•		•	•	•	•			•		•	٠	•	•	14
Fuel Turbopump	٠	•	•		•	•		•	•	•	•	•	•		•	•	•	•		14
Oxidizer Turbopump	•	•		•	•	•			•	•		•	•	•	•	•	٠	•	•	15
Control System	٠	•	•	•	•	•	٠	•	•	•	٠	•	•	•	•	•	•	٠	•	19
	Demonstrator Engine Preburner Injector Transition Case Main Burner Injector . Main Burner Chamber Primary Nozzle Two-Position Nozzle and Low-Speed Inducer Fuel Turbopump Oxidizer Turbopump	Demonstrator Engine Preburner Injector Transition Case Main Burner Injector Main Burner Chamber Primary Nozzle Two-Position Nozzle and T. Low-Speed Inducer Fuel Turbopump Oxidizer Turbopump	Demonstrator Engine Preburner Injector Transition Case Main Burner Injector Main Burner Chamber Primary Nozzle Two-Position Nozzle and Tran Low-Speed Inducer Fuel Turbopump Oxidizer Turbopump Control System	Demonstrator Engine																

SECTION II SUMMARY

A. DEMONSTRATOR ENGINE

1. Background

(C) Early studies of advanced liquid rocket engines by Pratt & Whitney Aircraft showed that high combustion chamber pressure could provide high performance and high thrust per unit area of the exhaust nozzle. These studies also showed the critical technology areas were cooling and turbomachinery. Air Force contracts directly related to the high-pressure rocket engine investigations are: AF04(611)-7435 High-Pressure Rocket Engine Feasibility, AF04(611)-10372 Staged Combustion Research, and AF04(611)-11401 Advanced Cryogenic Rocket Engine. NASA contracts directly related to high-pressure rocket engine investigations were: NAS8-11427 Design Study Engine System for Upper Stages of Uprated Saturn, NAS8-11714 Design, Fabricate, and Test a Breadboard Liquid Hydrogen Pump, and NAS8-20540 Liquid Oxygen Turbopump Study. The Advanced Engine Design Study, conducted under NASA contract NAS8-11427, showed that a single preburner, staged-combustion cycle, high-pressure, oxygen-hydrogen, bellnozzle rocket engine provided flexibility, envelope, and the high performance required for future advanced vehicle applications. During this NASA contract, detailed cycle studies indicated a single-preburner, staged-combustion cycle provided the best compromise between delivered specific impulse, weight, and complexity. These cycle studies also showed that a 5 to 7 mixture ratio range capability and a 10:1 throttling range could be provided with a minimum number of control points. The exploratory development programs demonstrated the feasibility of these component concepts to permit the initiation of an Advanced Development Program. During Phase I of the Air Force Advanced Development Program for a High Performance Cryogenic Rocket Engine under Contract AF04(611)-11401, a two-position, translating bell-nozzle concept was developed that provided a more compact bell-nozzle engine. At the end of Phase I, which ended 30 September 1967, the high-pressure engine had evolved to a flexible design. By fitting nozzle skirts of different area ratios, the same engine could be optimized for a variety of missions. Today the engine design shown in figure 2 offers high performance, altitude compensation, versatility and long life in a compact engine package.

CONFIDENTIAL

(U) Figure 2. XLR129-P-1 Demonstrator Engine

HIS PAGE CONTAINS SUBJECT MATTER COVERED BY A SECRECT CONFIDENTIAL SUBJECT MATTER COVERED BY A SECRECT CONFIDENTIAL SUBJECT BY U.S. COMPLEXING OF PATENTS

2. Design

_ _ _

. F.

(U) During Phase II, covering the present contract (F04(611)-68-C-0002), the design of the 250K demonstrator engine and its major components, including plumbing, has now been completed. Design of the engine and major components is based on proven test technology; namely, all the major comronents such as the combustion devices and turbomachinery have been tested at either the 250K or 350K thrust level, demonstrating their feasibility. Design studies were also conducted on the demonstrator engine in the areas of engine mockup and plumbing. A full-scale mockup of the demonstrator engine was used as a working tool during design. Numerous design iterations have been conducted on the mockup for component arrangement and plumbing. A satisfactory component arrangement for the engine mockup has been established. In the area of the engine plumbing, satisfactory designs and arrangements have been established for the fuel pump discharge lines, the preburner fuel inlet line, the main burner oxidizer inlet line, and associated components such as actuators, rods, and small connectors. Engine system analyses have also been conducted during the program to define component design requirements, estimate capabilities of the integrated engine system, and to include the results of component and engine tests. These analyses include: steady-state analysis, transient analysis, shutdown analysis, special design-cycle studies, and generation of performance data.

B. PREBURNER INJECTOR

(C) The preburner is an oxygen-hydrogen combustor supplying hot gases to drive the oxidizer and fuel pump turbines. Because preburner gases are used to drive the fuel and oxidizer pump turbines, the design goal temperature profile is 150°R peak-to-average to permit operating the turbines at the maximum allowable average temperature. The design of the preburner injector consists of 254 dual-crifice, tangential-swirler oxidizer elements, with concentric fuel annuli around each oxidizer element. All are arranged in a hexagonal pattern shown in figure 3. This design has demonstrated a peak-to-average combustion temperature profile of 76°R in a radial plane at an average gas temperature of 2388°R. This fixed-area, fuel-injection design concept is feasible because density changes occurring in gaseous fuel allow throttling while simultaneously maintaining a suitable injection velocity. However, because liquid oxygen is essentially incompressible, the dual-orifice principle is applied to a slot-swirler element to provide suitable injection velocity over the throttled range. The preburner-injector housing has 28 slots to allow gaseous hydrogen to flow from the outer fuel manifold to the manifold behind the faceplate. Primary oxidizer flow enters the primary oxidizer manifold through six equally spaced ports in the preburner-injector housing. Secondary oxidizer flow arrives at the secondary oxidizer manifold directly from the preburner oxidizer valve. The porous injector faceplate is fabricated from Rigimesh. Ignition systems will be integral spark igniter-exciter units that are mounted on both the preburner and main chamber. Two systems will be provided for the preburner and two for the main chamber to provide total spark redundancy.

口味

1.1

. *** • • •

(U) Figure 3. Preburner Injector Cross Section

CONFIDENTIAL

i the residence lateral

At. Ised

and a second second

=

11 - 21 -

C. TRANSITION CASE

(C) The transition case consists of four spheres; one main sphere and three small spheres whose centerlines intersect the main sphere at right angles. The smaller spheres act as the attachment points for three major components; the preburner injector, the oxidizer turbopump, and the fuel turbopump. The main sphere centerline coincides with the engine thrust axis. The entire assembly is a pressure vessel. The transition case contains internal ducting that routes preburner discharge gases through the fuel and oxidizer pump turbines and to the main burner injector as well. The goal of the transition case subtask is to demonstrate the structural adequacy of the engine transition case when operating at an internal pressure of 4856 psia and with an internal gas temperature as high as 2325°R. A full-scale mockup of the primary structure of the transition case is shown in figure 4. With incorporation of the preburner injector, fuel turbopump, and oxidizer turbopump, the transition case is a self-contained powerhead supplying the main-burner thrust chamber with high-pressure propellants necessary to produce the design thrust. Moreover, it serves as the primary combustor stage for the stagedcombustion cycle. Internal ducting of the transition case splits the hot fuel-rich gases from the preburner to provide adequate gas flow to each turbine. The fuel turbine requires about twice the mass flow required to drive the oxidizer turbine. Cooling liners, positioned between the outer case and the hot-gas flowpath, are included to keep the outer case temperature below 540°R. A satisfactory design of the transition case has evolved and meets all established design criteria for this important component.

- (U) Figure 4. Transition Case Full-Scale Mockup
 - CONFIDENTIAL

D. MAIN BURNER INJECTOR

(U) The main burner injector introduces, atomizes, and mixes liquid oxygen with the hot, fuel-rich turbine discharge (preburner combustion products) so efficient and stable combustion is achieved over the full operating range of thrust and mixture ratios. The main burner injector design consists of the oxidizer manifold and housing, spraybar-type internal manifolds, oxidizer-injection elements, and the porous faceplate as shown in figure 5. The main injector housing consists of an oxidizer-inlet horn, the oxidizer manifold, and crossover passages to the spraybars. The spraybar injector body consists of 48 individually machined spraybars brazed into the oxidizer-manifold ring. The spraybars are individually supported at the outside diameter only, thus permitting free thermal growth. This approach simplifies manufacturing and provides a lightweight design. Forty-eight radial spraybars are divided into three groups; 12 long spraybars equally spaced around the circumference, 12 medium spraybars equally spaced between the long spraybars, and 24 short spraybars equally spaced between the medium and long spraybars. This arrangement yields the maximum number of spraybars consistent with mechanical considerations, and results in good oxidizer-element density and uniform radial flow distribution. Self-atomizing injection elements are spaced along the spraybars to obtain good atomization and distribution. The fuel faceplate is made of Rigimesh, which forms the support structure as well as the porous face. The faceplate directs approximately 92% of the hot, fuel-rich, preburner combustion gases through slots surrounding the oxidizer-injector elements. The remainder of the gas passes through the porous faceplate. Major components are assembled by brazing and welding techniques that simplify manufacturing the components. This main-burner injector configuration represents a minimum overall length and weight design that satisfies the demonstrator engine cycle requirements.

4

e Z

(U) Figure 5. Main Burner Injector Configuration

CONFIDENTIAL

E. MAIN BURNER CHAMBER

(C) The main burner chamber contains the pressure resulting from propellant combustion, serves as the structural member supporting the primary and two-position nozzles, transmits thrust, and absorbs gimbal actuator loads. The overall goals of the main burner chamber subtask are to design, build, and demonstrate through full-scale testing, performance and operational capability of a lightweight, durable, thrust chamber for use in the demonstrator engine program over the specified throttling and mixture ratio ranges. Ignition capability must also be demonstrated at both sea level and altitude conditions. The main burner chamber design consists of two main components; an outer pressure shell and a transpiration cooled, copper wafer, chamber liner shown in figure 6. The outer pressure shell also provides the coolant manifold and serves as a mount for attaching the chamber liner in two-sections. Copper cylindrical wafers forming the chamber are divided into 28 zones. Each wafer consists of front and back plates. A zone is a collection of composite wafers fed by interconnected zone coolant manifolds. The chamber liner consists of a stackup of 512 0.040-inch thick copper wafer halves brazed together. Spiral groove patterns photoetched into one side of each wafer-half provide the path from the zone coolant manifold to the inside diameter of the chamber where they open into the main burner chamber. Composite wafers are constructed of two half-plates brazed at the unetched center plane with an axial thermal relief slot in the front wafer-half. By locating the slot in this plane, the heat exchanger spiral grooves on the opposite face are not affected. The addition of axial thermal strain relief slots minimizes the wafer thermal strain level by allowing free axial growth at the hot wall of the chamber, thus producing an acceptable low cycle-fatigue life.

(U) Figure 6. Main Burner Chamber Assembly Side View

F. PRIMARY NOZZLE

(C) The function of the primary nozzle is to contain the combustion gases and allow their shock-free expansion from an area ratio of 5.3:1 to 35:1. High-pressure hydrogen from the fuel pump is supplied as coolant to two regeneratively cooled portions of the primary nozzle. A second function of the primary nozzle is to provide structural support for the two-position nozzle. A third function is to act as heat exchangers to condition the hydrogen supplied to the transpiration-cooled chamber and the preburner injector. The primary nozzle design consists of two tubular, regenerativelycooled, heat exchangers shown in figure 7. The downstream heat exchanger is double pass, and supplies hydrogen to the hydrogen inducer turbine and transpiration-cooled main burner chamber. The upstream heat exchanger is single pass, and cools the nozzle from an area ratio of 5.3 to 18 using approximately 85 percent of the pump discharge hydrogen flow prior to delivery to the preburner injector. Both heat exchangers are shaped from tubes forming the desired nozzle contour. Based upon low cycle-fatigue data, inconel 625 (AMS 5666B) was selected for heat exchanger tube material. This material is easily welded and may be used after welding without further heat treatment. The support for the two-position nozzle is accomplished by the rear thrust bearings for the jackscrew actuators being supported in a circumferential ring at the midspan of the transpiration heat exchanger.

H H

÷...

(U) Figure 7. Primary Nozzle Configuration

CONFIDENTIAL

G. TWO-POSITION NOZZLE AND TRANSLATING MECHANISM

17

tri¶ y∂

-

(C) The function of the two-position nozzle in the extended position is to contain the combustion gases and allow additional shock-free expansion from an area ratio of 35:1 to 75:1. The two-position nozzle translates to provide a compact engine package in the retracted position. The translating mechanism is designed to provide positive extending and retracting of the two-position nozzle during engine operation. The two-position nozzle design consists of a circumferential coolant distribution manifold, a smooth nozzle outer skin with circumferential stiffening bands, and a corrugated inner nozzle skin shown in figure 8. The corrugated inner skin forms longitudinal coolant passages. The twoposition nozzle has a baseline contour starting at an area ratio of 35:1 and extends to a ratio of 75:1. This nozzle is designed to be dump cooled with low-pressure hydrogen taken from the fuel pump interstage. During sea level and low altitude operation with the nozzle retracted, coolant flow is not required. When the nozzle is extended, coolant is expanded through small nozzles at the ends of the corrugated coolant passages. Expansion of this warm hydrogen gas produces a specific impulse comparable to the main stream specific impulse. The nozzle is designed to withstand the maximum thrust pressure load plus a 10 g axial maneuver load. The translating mechanism provides precision positioning in the extended and retracted positions. Positive locking devices maintain the nozzle position when the engine is not operating.

1

. a'

(U) Figure 8. Two-Position Nozzle Design

H. LOW SPEED INDUCERS

(C) The function of the fuel and oxidizer low-speed inducers is to supply propellants to the main turbopumps at a pressure (NPSH) sufficient to prevent cavitation. This permits the vehicle propellant tanks to be maintained at a lower pressure thus saving tank and vehicle weight. The overall goal of the fuel and oxidizer low-speed inducer subtasks is to demonstrate performance and operational capability for use in the demonstrator engine. The three-bladed fuel inducer is driven by a single-stage partial-admission turbine. The fuel inducer operates independently of the main turbopump and at a speed lower than the main turbopump. This permits the fuel inducer to operate with a low inlet NPSH without cavitation. The fuel inducer is capable of operating with an NPSH as low as 60 feet, ove. a hydrogen inlet temperature range, from 36°R to 45°R This inducer is designed for a suction specific speed of 48,400 rpm $GPM^{1/2}/ft^{3/4}$ and a maximum pressure rise of 90 psid. The fuel low-speed inducer consists of bearings, shaft and thrust piston, turbine, and housings and is shown in figure 9. The oxidizer low-speed inducer is a single shaft axial flow unit with high suction specific speed. It is driven by a variableadmission, single-stage, radial-inflow, hydraulic turbine. The turbine is driven by fluid supplied from the discharge of the main oxidizer turbopump. The oxidizer inducer is of helical design with three blades, and is attached to the drive shaft and turbine assembly as shown in figure 10. The shaft axial thrust imbalance is absorbed by a single acting thrust balance piston. The oxidizer inducer was designed to operate at a minimum NPSH of 16 feet over an oxygen inlet temperature range from $162^{\circ}R$ to $180^{\circ}R$ with a suction specific speed of 44,000 rpm GPM $1/2/ft^{3/4}$ and a maximum pressure rise of 197 psid. Both inducers are designed for 100 reuses and a 10-hour life between overhaul.

I. FUEL TURBOPUMP

(C) The fuel turbopump supplies liquid hydrogen to the primary nozzle, the two-position nozzle and to the preburner injector at sufficient pressure and flowrates for engine operation from 20% to 100% maximum thrust and at mixture ratios from 5.0 to 7.0. The overall goal of the fuel turbopump subtask is to demonstrate an operational capability for use in the demonstrator engine program. The demonstrator engine requires the fuel turbopump to deliver liquid hydrogen at a flowrate of 91.3 lb/sec at a pressure of 5654 psia at its design point of 100% thrust and a mixture ratio of 5. The design of the fuel turbopump is shown in figure 11. The two-stage turbine delivers approximately 49,900 horsepower to the pump and operates at a maximum inlet temperature of 2325°R at 100% thrust and a mixture ratio of 7. The fuel pump must also demonstrate satisfactory starting capability and stable operation over the engine operating range of 20 to 100% thrust and mixture ratio range of 5 to 7. Pump life is based on 10 hours between overhaul and 100 reuses. Major components of the fuel turbopump are the pump, turbine, rotor assembly, and housings. The pump section includes the inducer, two bearings and mount systems, two impellers, and the thrust balance system. The highspeed inducer has three equally spaced helical blades. The roller bearings are 55 x 96.5 mm and are hydrogen cooled. The two pump impellers have 24 equally spaced, curved blades divided into increments of 6 long blades, 6 medium length splitter blades, and 12 short

I REAL MINER 11: 11: the the first -

· · · · ·

CONFIDENTIAL

V 14

28

South and the state of the stat

splitter blades. The thrust balance system, designed to compensate for any net axial imbalance during operation, provides a force of 50,000 pounds using a 2100 psia pressure difference. The thrust balance system consists of the thrust piston, the thrust piston housing, and the rear bearing housing. The two-stage turbine is cantilevered from the rear bearing assembly and consists of two turbine stages, inlet ducting, a support structure, and inlet and exit ducting. The pump housings consist of the inducer housing, the main housing, the thrust piston housing, and the rear bearing housing. Incomel 600 (AMS 5665) is used for the inducer housing and Incomel 718 (AMS 5663) is used for the other housings.

J. OXIDIZER TURBOPUMP

(C) The oxidizer turbopump supplies liquid oxygen to the preburner injector and main burner injector at sufficient pressure and flowrates for engine operation from 20 to 100% of maximum thrust and at a mixture ratio range from 5 to 7. The overall goal of the oxidizer turbopump subtask is to demonstrate performance and operational capability for use in the demonstrator engine program. The demonstrator engine requires the oxidizer turbopump to deliver liquid oxygen at a flowrate of 481 lb/sec at a pressure of 4800 psia at 100% thrust and mixture ratio of 7. The design of the oxidizer turbopump assembly is shown in figure 12. The oxidizer turbopump is a single-shaft unit with a single-stage shrouded centrifugal impeller driven by a two-stage, pressure-compounded turbine. The rotor shaft is supported by two antifriction 55 x 110 mm ball bearings. The forward bearing is located between the impeller and the thrust balance assembly, and the rear bearing is located in front of the turbine and separated from the turbine by a low leakage labyrinth seal. The rear bearing is cooled by liquid hydrogen and the front bearing is cooled by liquid oxygen. The bearings are separated by a low-leakage seal package that vents coolant leakage overboard. The seal package consists of one lift-off seal and five labyrinth seals. The two-stage turbine delivers a maximum of 18,000 horsepower to the pump and operates at a maximum inlet temperature of 2325°R at 100% and a mixture ratio of 7.0. The two-stage turbine consists of the turbine inlet duct, the two turbine stages, and the exit duct. Life is based on 10-hours time between overhaul and 100 reuses. The oxidizer turbopump consists of a pump, turbine, and housings. The pump section consists of the inducer impeller, bearings and mount system, thrust balance system, and the seals. The high speed inducer consists of three equally spaced helical blades having a constant tip diameter. The single stage impeller has 12 equally spaced, curved blades that are divided into increments of three full blades, three long splitter blades, and six short splitter blades. The impeller is completely shrouded and is fabricated from Inconel 718 (AMS 5563). The thrust balance system has a capability of 45,800 pounds at 100% thrust and a mixture ratio of 5. The housings consists of an inlet housing, center housing, and rear housing.

CONFIDENTIAL

16 CONFIDENTIAL (This page is Unclassified)

-

(U) Figure 12. Oxidizer Turbopump Assembly

K. CONTROL SYSTEM

.

(U) A closed loop control system is required to ensure safe, precise, and responsive performance of the engine throughout its operating range. The planned system will accept vehicle or "man-in-the-loop" command signals at any rate or sequence, and provide rapid response within the functional and structural limits of the engine. The system will be stable at any setting and will respond smoothly to command.

(U) Four discrete electric current signals from the vehicle will accomplish engine starting, shutdown, and modulation of thrust and mixture ratio. The control signals may originate either in the vehicle guidance control or a pilot's command console in a manned vehicle. Response of the engine to these signals will be governed by an electronic Engine Command Unit (ECU). The demonstrator engine ECU will be a solidstate electronic component incorporating all flight engine control logic. The control valves, actuators, igniters, and plumbing will be lightweight, flight-type parts contained within the engine envelope. The closed loop control system will use flowmeters in both propellant lines to generate signals proportional to actual thrust and mixture ratio. These flowmeter signals will be compared to the vehicle input signals in the ECU and will automatically correct any difference between actual and desired values by modulating the engine propellant values. An analysis of the XLR129-P-1 rocket engine cycle has established the following four control points are required for satisfactory steady-state operation: (1) preburner oxidizer valve, (2) preburner fuel valve (3) main-chamber oxidizer valve, and (4) exidizer low-speed inducer, variable turbine, actuator. Several on-off sequenced valves are also used in the control system as follows: (1) nozzle-skirt coolant valve, (2) propellant vent valves, and

UNCLASSIFIED

1 1 2.

.

(3) helium system valves. The control system consists of a basic control computer that includes scheduled valve and oxidizer low-speed inducer turbine areas, with limited authority trim based on measured engine parameters. Various engine operating limits will be protected by override authority. Control capability protecting the engine is critical to a manrated system. Within the demonstrator engine operating envelope, the propellant schedule in the control will prohibit operation beyond component limits. The principal control valves and subsystems have been designed, and are as follows: (1) preburner oxidizer valve, (2) preburner fuel valve, (3) main-chamber oxidizer valve, (4) two-position nozzle coolant supply system (5) propellant vent valves, and (6) helium supply system.

SECTION III ENGINE SYSTEM DESCRIPTION AND PERFORMANCE

,a . .

...

-

.

11.5

		Page
A.	Description	 21
B.	Operating Characteristics	 24
C.	Layout and Schematic	 31
D.	Weight	 31
E.	Interfaces	 31
7.	Design Criteria	 40
G.	Systems Analysis	 40
H.	Performance Data	 56

---------<u>ti</u> <u>....</u>

í.

°.‡.

S P. E. Mart

-

--

-

~

SECTION III ENGINE SYSTEM DESCRIPTION AND PERFORMANCE

A. DESCRIPTION

(U) The staged-combustion, high-pressure demonstrator engine with a twoposition bell-nozzle is a 250,000-lb thrust (class), throttleable, highperformance propulsion system. The operating envelope of thrust and mixture ratio is shown in figure 13 and engine characteristics are provided in table I. Nozzle interchangeability and the two-position nozzle concept permit operation of the same engine system with optimum nozzle area ratios for improving the performance of the lower or upper stages. This interchangeability is achieved by using the same turbomachinery power package and attaching the desired nozzle skirt for the various application requirements. A cutaway view of the engine is presented in figure 14. A propellant flow schematic illustrating the principal flowpaths is presented in figure 15.

FDC 27533E

ii iik - iva

1.1

E,

11.11

i. i.

....

(U) Figure 14. XLR129-P-1 Demonstrator Engine

THIS PAGE CONTAINS SUBJECT MATTER COVERED BY A SECRECY OFFICER WITH A MODIFYING SECURITY REQUIREMENTS PERMIT ISSUED BY U.S. COMMISSIONER OF PATENTS.

. .

(U) Figure 15. Demonstrator Engine Propellant Flow Schematic

(U) Hydrogen and oxygen enter at the engine-driven low-speed inducers. The low-speed inducers minimize vehicle tank pressure requirements while allowing high-speed main propellant pumps to obtain high turbopump efficiencies. The fuel low-speed inducer is a single shaft unit with a high specific speed, axial-flow inducer driven by a partial-admission, singlestage, hydrogen turbine. The oxidizer low-speed inducer is also a single shaft unit with a high specific speed, axial-flow inducer driven by a variable admission radial inflow single-stage liquid oxygen turbine. din.

.....

.....

. ...

-

ι.

.....

(U) The main fuel turbopump is a single shaft unit with two back-to-back centrifugal pump stages driven by a two-stage, pressure-compounded turbine. A double-acting thrust balance piston is provided between the pump and turbine.

(U) The oxidizer turbopump is a single shaft unit with a single, centrifugal pump stage driven by a two-stage, pressure compounded turbine. A single-acting thrust balance piston is provided between the pump and turbine.

(U) The preburner injector consists of dual-orifice tangential-swirler oxidizer injection elements with concentric fixed-area fuel injection. A translating sleeve valve is incorporated at the rear of the injector assembly to vary the total oxidizer flow rate to adjust engine power level and to adjust the relative flow of the primary and secondary elements. The preburner combustion chamber is an integral part of the transition case, which contains the turbine drive gas ducts and a cooled outershell. The main turbopumps are mounted to the transition case with a plug-in arrangement of the turbines to provide maintainability.

(C) The main burner injector consists of a tangential-swirler oxidizer injection elements arranged in radial spraybars. The fuel side directs fuel-rich gas flow (preburner combustion products after expansion through

the turbine) through slots in a porous faceplate. The combustion chamber wall is composed of a hydrogen-cooled liner extending from the injector face to an area ratio of 5.3. The liner is composed of porous plates providing transpiration cooling.

(U) The nozzle, which attaches at the end of the transpiration cooled section, is composed of two fixed regeneratively cooled sections and a retractable, low-pressure, dump-cooled section.

(U) The main fuel flow is pumped to system operating pressure levels by the main fuel pump and is ducted to cool the regeneratively cooled sections of the nozzle. The forward section is cooled with the majority of the fuel flow from the pump in a single pass heat exchanger. This flow exits from the nozzle and is ducted to the preburner. The regeneratively cooled rear section of the fixed nozzle is cooled with the remainder of the fuel flow in a two-pass heat exchanger. This flow is subsequently used as the working fluid to power the fuel low-speed inducer drive turbine and is then used to cool the porous main chamber walls.

(U) A small amount of fuel is ducted from the fuel pump interstage to cool the retractable nozzle skirt. This fuel is heated to high temperature in the skirt and expelled overboard through small nozzles at the ends of the coolant passages. A value is provided to shut off the flow when the secondary nozzle is retracted.

(U) After being pumped to system operating pressure, the oxidizer is divided between the preburner and the main chamber. The smaller portion of the flow is supplied to the preburner and is burned with the fuel. The resulting combustion products provide the working fluid for the main turbines, which are arranged in parallel. The turbine exhaust gases are collected and directed to the main burner injector.

(U) The main burner oxidizer flow provides the oxidizer low-speed inducer turbine working fluid and uses the available pressure drop between the main oxidizer pump discharge pressure and the main chamber pressure for the turbine power. The oxidizer flow is then injected into the main burner chamber and is mixed and burned with the fuel-rich turbine exhaust gases. The resulting combustion gas is then expanded through the bellnozzle.

(U) The primary engine control values are located in the liquid oxygen supply lines to the preburner and the main chamber and in the liquid hydrogen supply line to the preburner.

B. OPERATING CHARACTERISTICS

1. Steady-State Operating Parameters

(C) The component and engine system steady-state operating parameters are given in table II, for mixture ratios of 5, 6, and 7 at 100%, 75, 50 and 20% thrust. (These operating parameters result from an iterative optimization process as described in paragraph G.)

(U) Table II. Demonstrator Engine Operating Characteristics, Booster

75% Thruet r = 7.0	183,000 441 441	904 69.25 69.25 75/35 8.18 8.28 8.28 14.6	2002 8.06 86.3 86.3 572 6.4 7.68	3003 1.23 2274 1.29 1.29 966 92.4 100	5,36 3836 129 100 349	41.7 3199 1131 56.4
75% Thruet r = 6,0	183,000 448 367	69.25 131.7/80.0 75.35 58.4 350.1 408.5	2059 6.77 96.8 96.8 89.7 532 9.7 7.68	3100 1.06 1984 1984 158 1065 98.6	5.17 3701 120 94 350	48.4 3341 121 69
75% Thrunt r = 5.0	183,000 451 370	69.25 131.7/80.0 75/35 67.7 338.4 406.1	2101 5.53 96.9 97.7 496 13.2 1.24 7.68	3256 0.98 1715 201.9 201.9 1385 108.6	5, 06 3595 114 19	2
100% Thrust r = 7.0	244,000 444 380	69.25 131.7/80 75/35 68.8 481.4 550.1	2676 7.94 96.9 125 979 5.49 7.68	4152 4152 2345 200.5 299 128.2 100	6.59 4830 1139 341 33	56.7 4455 1142 90.1
100% Thrust r = 6.0	244,000 450 386	69.25 131.7/80.0 75/35 77.5 465.2 542.8	2740 6.68 97.0 134 910 0.8 5.36 7.68	4332 1.12 2095 248.0 244 138.1	4,4,4 6,4,4 10 10 10 13 13 8	55.5 712 133 112
100% Thrunt r = 5.0	244,000 450 387	69,25 131.7/80.0 75/35 90.3 451.5 541.9	2806 5.56 96.7 164 851 -1.6 6.42 6.42 7.68	4778 1.08 2026 320.8 1141 157.8 100	7.75 5279 142 142 266	76.5 5271 142 147 35.7
Configuration Thrus In	Vacuus, Io Vacuus Specific Impulse, sec e = 75 Sva Luvel Specific Impulse, sec e = 35 Envelope: Diameter, in,	Length: Nozzle Extended/Retracted, in. Nozzle Area Rativ: Extended/Retracted Fuel Flow, 1b/sec Oxidizer Flow, 1b/sec Total Propellant Flow, 1b/sec Main Burner Chamber	Throat Total Pressure, psia Mixture Ratio (injector) Specific Impulse Efficiency, X Fuel Injector Pressure Loss, psi Oxidizer Injector Pressure Loss, psi Momentum Pressure Loss, psi Transpiration Coolant Flow, lb/sec Throat Diameter, in.	Total Pressure, psia Mixture Ratio (preburner injector) Temperature, °R Fuel Injector Pressure Loss, psi Oxidizer Injector and Control Valve Pressure Loss, psi Total Injector Propellant Flow, lb/sec Combustion Efficiency, Z Primary Nozzle	Transpiration Supply Section: Coolant Flow, 1b/sec Coolant Inlet Pressure, psia Coolant Inlet Temperature, °R Coolant Pressure Loss, psi Coolant Temperature Rise, °R Preburner Supply Section: Coolant Flow, 1b/section:	coolant Inlet Prussure, paia Coolant Inlet Temperature, °R Coolant Pressure Loss, pai Coolant Temperature Rise, °R
			CONFIDENTI	AL		

CONFIDENTIAL

43393

AT A M

ĩ

8.14 - 14 - 1 1 ġ

(U) Table II. Demonstrator Engine Operating Characteristics, Booster (Continued)

		50% Thrust r = 5.0	50% Thruat r = 6,0	50% Thrust r = 7.0	20% Thruet	20% Thrust	201 Thruet
	Configuration			1			
	Thrust, lb	122 000	133 000				
	Vacuum Specific Impulse, sec e m 75	677	444,000	144,000	40, 000 444	40,800	48,800
	Sea Level Specific Impulse, sec e = 35 Envelore:	344	339	35	269	264	449 262
	Diameter, in.				:		1
	Length: Nozzle Extended/Retracted in	09.25	69.25	69.25	69.25	69.25	69.25
	Nozzle Area Ratio: Extended/Retracted	15/25	1.1.7/80.0	131.7/80.0	131.7/80.0	0.09/1.161	131.7/80.0
	Fuel Flow, 1b/sec	6 27	c c /c/	75/35		15/35	25/25
	Oxidizer Flow, 1b/sec	1.44 1.45	1.40	9		15.9	14.2
	Total Propellant Flow, lb/sec	261.4	273.8	243.7	8.90t	95.J	99.6
	Main Burner Chambar						8.411
	Throat Total Pressure, psia	1396	1 360	0000			
	Mixture Ratio (injector)	5 61		6701	552	537	526
CI	Specific Impulse Efficiency, X	96.8	4 40	(7.0 7.70	5.99	7.45	8.93
DI	Fuel Injector Pressure Loss, pai	543		70.4 5 2 5	8.3	36	9.29
N	Uxidizer Injector Pressure Loss, pai	230	246	200	17.4	18.0	18.3
FI	Monentum Pressure Loss, psi	15.2			13.1	42	45.6
20 D	Transpiration Coolant Flow, 1b/sec	2 95	0.11		0.6	7.6	1.1
s El	Throat Diameter, in.	7.68	1 6 B		1.45	1.57	1.62
N				00.1	7.68	7.68	7.68
TI	Preburner						
A	Total injector Pressure, psis	76.06					
L	Mixture Ratio (preburner infector)	0707	0/61	1926			
	Temperature, R	0.00	1.01	1.21	141	728	719
	Puel Injector Pressure Lues mai	1548	1061	2223	0.76	1.00	1,24
	Oxidizer Injector and Control Valve	901	86	74	1464	1883	2255
	Pressure Loss, ps1				30.06/	27.810	22, 382
	Total Intector Propellant Flow 16/220	(A)	5011	1102	603		
	Combustion Efficiency. Z	0/•J	62°2	58.8	200	652	677
		001	100	100	23.8	22.24	21.3
	Primary Nozzle			PANEMENTIAL	201	100	100
	Transpiration Supply Section:			WWW INCH I WW			
	Coolant Flow, 1b/sec	L7 L					
	Coolant Inlet Pressure, pala	4140	10'C	. 9. J.	1.66	1.60	1.86
	Coolant Inlet Temperature, °R	97.8	0007	6/12	1156	1251	1302
	Coolant Pressure Loss, psi		co1	116	75.6	84,8	92.6
	Coolant Temperature Rise. "R		· · / ·	71.9	28.7	3115	
				365	392	187	307
	Preburner Supply Section:						
	Coolant Flow, lb/sec	17 7					
	Coolant Inlet Pressure, pais	21.05	5.10	26.9	13.7	11.2	9.6
	Coolant Inlet Temperature. R	7 50	2100	2035	785	768	750
	Coolant Pressure Loss, bai	4° C4	10/	117	75.0	82.0	87.6
	Coolant Temperature Rise. "R	0 ***	35.8	30.0	10.9	9.6	7.8
		¥.C4	55.8	60.8	53.0	72.0	74.9

CONFIDENTIAL

1.0

2 / J ÷. <u>.</u>

ر. عنو

.

(U) Table II. Demonstrator Engine Operating Characteristics, Booster (Continued)

		100% Thrust r = 5.0	100% Thrust r = 6,0	190% Thrust r = 7.0)5% Thru≉t r = 5,0	75% Thrust r = 6.0	75% Thruet r = 7.0
	Low-Spied Inducer						
	Fuel Inducer:	1 H H H H H H H H H H H H H H H H H H H					
	Flow Rate, 1b/sec	90.31	77.5	68.8	67.67	58.4	51.8
	Speed, rpm	19,823	18,146	17,699	16,150	15,742	15,618
	Pressure Rise, psi	90°0	88.7	1001	74.8	86.7	5.76
	NPSH, ft	60.2	60.2	60.2	60.2	60.2	60.2
	Efficiency, %	61.6	60.1	56.7	60.0	55.2	50.7
	Oxidizer Inducer:						
	Flow Rate, 1b/sec	451.5	465.2	187	4.865	350.0	362.8
	Creat row	2175	51.67	4904	4457	6597	4989
			101	100			
	rressure Kise, psi	007	127	001	407	4 · 4 · 4	
	JI HCAN	10.0	10.0	10°0	10.0	0.01	0.01
	Efficiency, X	57.2	60.7	61.4	52.9	55.8	7 *1
	Fuel Low-Speed Inducer Turbine						
C		4 -				1 46	1 40
	Tressure Katlo	1.40	C # " 1		74.7		
N	riow Mare, 10/sec	500 CT	70.4	4./3	1.04 1.1	2/16	3.01
IF	Speed, rpm	19,823	16,140	17,099	10,130	15, /42	10°01
· 2	Efficiency, %	63.1	60.3	58.8	57.4	1.66	1.50
7)Ei	Oxidizer Low-Speed Inducer Turbine			CONFINELITIAL			
		***	0 663	478		A 700	876
[]	rressure ucop, pat	2// 89C	101	804		208	
A	FLUW RALE, LUTSEC	56.17	1015	7007	2.262	047 1450	4989
L	opeeu, tum	1740					
	EITICLENCY, A	C*00	1.21	0.01	6. 7C	/	C*78
	Preburner Fuel Valve						
		ł	:	:			
	Flow, lb/sec		4	57	58.0	0.64	42·24
	Pressure Drop, psi	270	200	550	162	475	745
	Effective Area, in ²	3.48	3.48	1.83	3.45	1.69	1.20
	Preburner Oxidizer Valve						
	Flow, lb/sec	25	66	89	:	:	4.4
	Pressure Drop. pai	670	580	230		7	\$
	Effective Area, in2	0.54	67.0	0.82	1220	006	
					512.0	0.260	
	Main Chamber Oxidizer Valve						
	Flow, lb/sec	370	390	410			
	Pressure Drop, psi	630	1120	1520	283	900	ote
	Effective Area, in,	1.74	2.13	2.96	520	847	0011
					1.58	1.86	2.49

(U) Table II. Demonstrator Engine Operating Characteristics, Booster (Continued)

	50% Thrust r = 5,0	50% Thrust r = 6,0	507 Thruet r - 7.0	20% Thrust r = 5.0	20% Thrust r = 6.0	20% Thrust r = 7.0
Low-Speed Inducer						
Fuel Inducer:						
Flow Rate, 1b/sec	45.2	1.66	34.8	16.3	15.9	14.2
Speed, rpm	12,473	12,630	12,663	8711	7978	6408
Pressure Rise, psi	58.0	70.3	77.5	32.3	37.2	39.5
NPSH, ft	60.2	60.2	60.2	60.2	60.2	60.2
Efficiency, Z	54.6	47.8	42.9	35	30.2	26.9
Oxidizer Inducer:						
Flow Rate, 1b/sec	226.2	234.7	243.7	91.5	95.3	97.66
Speed, rpm	3745	3906	4115	161	2017	2163
Pressure Rise, psi	176	192	213	4	3	65
NPSH, ft	16.0	16.0	16.0	16.0	16.0	16.0
Efficiency, %	48.9	48.8	48.2	36.0	36.1	36.4
Fuel Low-Speed Inducer Turbine						
Dressire Datio	77 1	1 40	1 63			
FiceBurg Americ Fice Bata 16/amer	1: 	1.47 2 15	1.34	10.1	<u> </u>	10.1
stow Mare, to/acc Speed. rim	12.173	12.610	12 663	07.1	1.30	
Efficiency, L	50.3	48.7	47.5			0.11
		PONCIALI	TAI			
Oxidizer Low-Speed Inducer Turbine						
Pressure Drop, pat	835	923.2	1062	573	650.1	495.4
Flow Rate, 15/aec	195	202	210	80.6	83.5	87.1
Speed, rpm	3745	3906	4115	1791	2077	2163
Efficiency, %	48.6	48.2	47.3	28.8	28.3	28.5
Preburner Fuel Valve						
Flow, 1b/sec	38.5	32.0	27.5	14	12	01
Pressure Drop, ps i	348	628	808	380	200	570
Effective Area, in ⁶	1.55	86.0	0.76	0.56	0.43	0.35
Preburner Oxidizer Valve						
Flow. lb/sec	23	24	25	~	5.5	0
Pressure Drop, psi	1020	1040	1040	580		680
Effective Area, in ²	0.130	0,140	0.140	0°07	0.04	90°0
Main Chamber Oxidizer Valve	·			ŝ		į
Flow. lb/sec	194	202	210	120	071	22
Pressure Drop. psi	360	530	640	1.27	1.29	1.46
Effective Area, in2	1.42	1.60	2.02			•

CONFIDENTIAL

\$

- -

28 CONFIDENTIAL

(U) Table II. Demonstrator Engine Operating Characteristics, Booster (Continued)

transition from the form that		Two-Position Nozzle	100% Thrust r = 5.0	100% Thrust r = 6.0	100% Thruat r = 7.0	75% Thrust r = 5.0	75% Thrust r = 6.0	
And Turtopamp Mainer of Name Stages Number of Stages France Rise, pril Persure Persure Persure, Persure Persure, Persure Rise, pril Persure Rise, pril Persure Persure Persure Persure, Persure Persure, Persure Rise, pril Persure Rise, pril		Coolant Flow, lb/sec Thrust, lb	2.33 901	2.24 905	2.24 922	2.02 760	2.0	22
Andre of Number		Fuel Turbopump						
Stored: The stage Constrained Constrained <thconstrained< th=""> <thconstrained< th=""> <thco< td=""><td></td><td>Pump:</td><td></td><td></td><td></td><td></td><td></td><td></td></thco<></thconstrained<></thconstrained<>		Pump:						
Tester for white the pair of stage Model of stage		Number of Pump Stages	7	2	2	2	7	
Result (file) Non- the flags, indication, inditention, inditention, indication, indication, indication, indica		Speed, rpm	48,043	44.548	74,490	38, 783	28.7	4
Constant File Function States Function<		Pressure Rise, psi	5493	4845	4915	3686	3723	
Important from the form, int Stage, from 2226 2004 2001 117 Important from the from, inter 2226 2004 2001 117 Important from the from, inter 2226 2004 2001 117 Important from the from the from inter 211 211 211 211 211 Important from the from the from inter 211		Overall Efficiency, X	65.9	65.3	63.7	650	63.1	
Constraints Constraints <thconstraints< th=""> <thconstraints< th=""></thconstraints<></thconstraints<>		Impeller Tip Velocity, lst Stage, ft/sec	2226	2064	2061	1797	1794	
Constrate Rise, Name 91.3 91.1<		Impeller Tip Velocity, 2nd Stage, ft/sec	2641	2449	2446	2132	2129	
Inter Flow, Ib/sec 91.3 36.3 6.73 6.73 6.73 5.73 6.73 5.74 Turbine: Transersture, Nr Transersture, Nr 2011 2079 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.40		Temperature Rise, R	61.3	83.1	88.6	66.1	9.12	
Turbine: 2 2 2 2 2 Number of Stages Freesure Antice 1,40 1,40 1,40 Freesure Antice 1,11 2,13 1,10 1,20 Freesure Antice 1,10 1,13 1,10 1,20 Freesure Antice 1,10 1,13 1,13 1,10 Freesure Antice 1,10 1,13 1,13 1,13 Freesure Antice 1,10 1,13 1,10 1,13 Multice Thropound 1,11 1,13 1,13 1,13 Multice Thropound 1,13 1,13 1,13 1,13 Multice Thropound 1,13	(Inlet Flow, 1b/sec	91.3	78.5	69.7	67.7	58.4	
52 2 2 2 2 2 Multer of Stages 1.59 1.49 1.40 1.40 1.40 Tressure katolo 1.15 1.15 1.16 1.20 1.20 Testere trees pairs 8 1.15 1.16 1.20 1.20 Testere trees pairs 8 1.15 1.16 1.20 1.20 Testere trees pairs 8 1.100 8.11 1.100 1.20 Testere trees pairs 8 1.100 8.11 1.100 1.20 Testere trees pairs 8 1.100 8.11 1.100 1.100 Testere tree pairs 8 1.100 8.11 1.100 1.100 Multer Top vious 8 1.100 9.15 1.100 1.100 Multer Top vious 8 1.100 9.15 1.100 1.100 Number of Stages 8.11 1.100 9.11 1.100 1.100 Speed, rgs 1.100 9.11 1.100 1.100 1.100 Testere kato 1.100 9.11 1.100 1.100 1.100 Testere kato 1.100 9.11 1.100 1.100 1.100 Testere kato <t< td=""><td>CC</td><td>Turbine.</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	CC	Turbine.						
Fressure Ratio 1.59 1.40 1.46	N	Number of Stages	2	•	•	2	2	
Galaxy Transmission Mail	F	Pressure Ratio	0 2 1	1 40		1.46	1.43	
Note the server, pairs 177	2 [Inlet Temperature. °R	1100	2.170	14.1	1702	1967	
Temperature Droy, "R With and the construction of the construction	9)[Inter Pressure hata	1101	102	0767	3220	3066	
TPILI Near Wheel Velocity, ft/sec 1380 1380 1380 1201 1201 1201 Inter Flow, Ib/sec Inter Flow, Ib/sec 110.6 96.6 89.5 76.1 76.3 76.3 Inter Flow, Ib/sec Inter Flow, Ib/sec 110.6 96.6 89.5 76.1 76.3 Number of Stages Stages 57.12 1 <td>N</td> <td>Temperature Drop. 8</td> <td>4/21</td> <td>4283 157 D</td> <td>4100</td> <td>124</td> <td>131.7</td> <td></td>	N	Temperature Drop. 8	4/21	4283 157 D	4100	124	131.7	
Titlet Flow, 1b/sec 110,6 110,6 110,6 110,6 110,6 110,6 10,5 16,5 10,5 16,5	IT	Mean Wheel Velocity fr/sec	1100		C01	1201	1200	
Init: Flow, Dive 0.0 0.	1/	Efficiency 2	78 1	0001	9/01	76.5	76.3	
Oxidizer Turbopump Aump: Constant Number of Stages Stages Number of Stages Stages Number of Stages Stages Speader tyme Limit 1 Number of Stages Stages Speader tyme Stages Inlet Flow, lb/sec Stages Number of Stages Stages Number of Stages Stages Number of Stages Stages Stages Number of Stages Stage Stage Stage Number of Stages Stage Stage Stage Number of Stages Stage	L	Inlet Flow, 1b/sec	110.6	96.6	89.5	76.1	68.9	
Pump: Number of Stages 1 1 1 Number of Stages Speed, rpm Speed, rpm Speed, rpm Speed, rpm Speed, rpm Speed, rpm S732 S139 22,612 20,939 19,973 Speed, rpm S732 S139 22,612 20,939 19,973 9932 Ffesture Rise, pai S732 S139 466 771 9933 9933 Efficiency, X S55,6 66. 771 9393 9393 Imperiate Rise, R 40.1 31.7 28.1 413.0 421.3 Intel Flow, 1b/sec 919.4 545.9 558.2 413.0 421.3 Number of Stages 1.49 1.49 1.46 1.42 23.1 Number of Stages 1.59 1.49 1.46 1.43 421.3 Intel Flow, 1b/sec 1.59 1.49 1.46 1.42 Intel Flow, 1b/sec 1.59 1.49 1.46 1.45 Intel Flow, 1b/sec 1.59 1.49 1.46 1.42 Intel Flow, 1b/sec 1.59 1.49 1.46 1.45 Intel Flow, 1b/sec 1.59 2.2 2.1 2.1 Intel Flow, 1b/sec 1.59 <td></td> <td>Oxidizer Turbopump</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>		Oxidizer Turbopump		_				
Number of Stages 1		Pump:		-			•	
Speed, rm 25,727 23,399 25,612 20,039 19,972 Fficiency, T 5732 513 992 51,612 20,039 19,972 Efficiency, T 5732 513,99 428 413,0 17,1 739 Impelier Tip Velocity, ft/sec 55.6 65.5 66 61,1 771 739 Temperature Rise, "R 40.1 31.7 28.1 413.0 51.3 Temperature Rise, "R 40.1 31.7 28.1 413.0 51.3 Turbine: 619.4 545.9 558.2 413.0 421.2 Number of Stages 1.49 1.49 1.46 37.2 21.3 Number of Stages 1.49 1.46 37.2 20.3 1.43 Inlet Flow. Holect 2.1 2.2 1.45 37.2 20.3 Inlet Flow. Holect 2.1 2.2 1.45 37.2 23.1 1.45 Inlet Flow. Holect 2.1 2.3 2.41.3 2.45 2.41.3 2.41.2 Inlet Flow. Holect 2.1 2.3 2.41.3 </td <td></td> <td>Number of Stages</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>T</td> <td></td>		Number of Stages	-	-	-	-	T	
Freenure Rise, pai 5137 5137 5139 4628 439 393 Fficiency, X Impelier Tip Velocity, ft/acc 55.6 5139 4658 61.6 53.0 Impelier Tip Velocity, ft/acc 53.6 53.5 66.5 837 739 393 Impelier Tip Velocity, ft/acc 53.6 53.1 31.7 28.1 739 393 Inter Flow, lb/acc 59.2 545.9 545.9 558.2 413.0 413.0 413.0 Number of Stages 1 31.7 28.1 31.7 28.1 413.0 413.0 Number of Stages 1 1 345.9 558.2 413.0 413.0 413.0 Number of Stages 1.46 1.46 37.2 28.1 413.0 413.0 Inter Flow, lb/acc 1.59 1.49 1.46 37.2 30.3 Inter Flow, lb/acc 2.1 2.2 1.46 37.2 30.3 Inter Flow, lb/acc 2.3 1.40 1702 30.4 1702 30.3 Inter Flow, lb/acc 2.3 1.49 <td></td> <td>Speed the</td> <td>1 111</td> <td>1 200</td> <td>1</td> <td>20.839</td> <td>19.972</td> <td></td>		Speed the	1 111	1 200	1	20.839	19.972	
Fitzence Area 51.9 46.28 61.6 51.0 Efficiency Area 51.5 65.5 66 771 739 Impelier Tip Velocity, ft/sec 53.5 66.6 771 739 Impelier Tipw, lb/sec 519.4 545.9 558.2 61.6 61.0 Inlet Flow, lb/sec 619.4 545.9 558.2 413.0 421.2 Numbre: Numbre: 29.1 29.1 29.2 25.3 Numbre: 10.1 31.7 28.1 413.0 421.2 Numbre: 11.4 545.9 558.2 1.43 23.1 Numbre: 2 2 2 2 2 2 Inlet Flow, lb/sec 1.49 1.46 37.2 30.4 1702 1907 Inlet Flow, lb/sec 1.13 2079 2726 3071 2226 3071 Inlet Flow, lb/sec 1102 1007 1202 987 67.3 66.3 Femperature brop, "R 1102 1021 987 67.3 60.3 66.3		Drossity Dias and		44C 'C7	210,22	1954	1952	
Imperiation A. 50.0 65.0 711 739 Imperature Tip Velocity, ft/sec 932 666 837 711 739 Temperature Rise, "R 40.1 31.7 28.1 739 29.2 23.3 Temperature Rise, "R 40.1 31.7 28.1 739 29.2 23.3 Temperature Rise, "R 40.1 31.7 28.1 739 29.2 23.3 Inlet Flow, lb/sec 619.4 545.9 558.2 413.0 421.2 Number of Stages 1.49 1.49 1.46 37.2 20.3 Inter Flow, lb/sec 1.59 1.49 1.46 37.2 20.3 Inter Flow, lb/sec 2011 2079 2326 2011 Inter Flow, lb/sec 113 209 4113 1002 Inter Flow, lb/sec 1123 1021 987 61.3 Man Wheel Velocity, ft/sec 1123 1021 987 61.3			2616	6770	87.94	61.6	61.0	
Inder Flow, blacc 93,2 90,0 83,7 23,1 23,1 Inter Flow, blacc 619,4 545,9 558,2 413,0 421,2 Inter Flow, blacc 619,4 545,9 558,2 413,0 421,2 Inter Flow, blacc 619,4 545,9 558,2 413,0 421,2 Number of Stages 2 2 2 2 2 Pressure Ratio 1.49 1.49 1.46 37,2 30,3 Inter Flow, blacc 2 2 2 2 2 Inter Flow, blacc 1.59 1.49 1.46 37,2 30,3 Inter Flow, blacc 2 1.49 1.46 37,2 30,3 Inter Flow, blacc 2011 203 3326 3031 Inter Freesure, psis 156,1 137 142,0 4113 109 Inter Pressure, psis 156,1 137 142,0 917 61,3 Mander Veocity, fr/sec 1123 1021 987 61,3 66,3		ciliciency, a T11 Ti- V-11+ fil	0.00	e5.5	9	171	066	
Inter Flow, lb/sec 0.0.1 0.1.7 28.1 413.0 421.2 Turbine: Inter Flow, lb/sec 619.4 545.9 558.2 413.0 421.2 Turbine: Inter Flow, lb/sec 619.4 545.9 558.2 413.0 421.2 Turbine: Inter Flow, lb/sec 1.59 1.49 1.45 1.42 1.42 Turbine: Inter Flow, lb/sec 1.56.1 1.30 20.3 20.3 Inter Flow, lb/sec 2 1.49 1.46 37.2 30.3 Inter Temperature, Pais 2011 2079 2326 301 Inter Temperature Drop, "R 156.1 137 142.0 912 Mean Wheel Velocity, fr/sec 1123 1021 987 60.3		Turpetter IIP VELUCITY, IC/840 Ternorative Blac ⁶ D	264	000	837	29.2	25.3	
Inter Flow, 1b/acc 619.4 545.9 558.2 41.4 Turbine: Inter Flow, 1b/acc 619.4 545.9 558.2 41.4 Tumber of Stages Inter Flow, 1b/acc 1.59 1.49 1.46 37.2 20.3 Inter Flow, 1b/acc 1.59 1.49 1.46 37.2 30.3 Inter Temperature, "R 2011 2079 2326 3011 Inter Temperature Drop, "R 1.56.1 1.37 2026 3011 Femperature Drop, "R 1.56.1 1.37 109 114 Maan Wheel Velocity, ft/sec 1.123 1021 987 66.3		Lewperature state, R	1.04	31.7	28.1			
Turbine: 2 142 142 143 142 144 145 142 145 142 105 114 117 109 114<		Inlet Flow, 1b/sec	619.4	545.9	558.2	2.014	7"174	
Number of Stages 2 2 2 1.45 1.42 Fressure Ratio 1.59 1.49 1.46 37.2 30.3 Inlet Flow, 1b/sec 48.1 42.3 39.4 1702 1967 Inlet Flow, 1b/sec 48.1 42.3 39.4 1702 1967 Inlet Temperature, "R 2011 2079 2326 3071 Inlet Pressure, Psis 4730 4290 4113 109 114 Temperature Drop, "R 155.1 137 142.0 912 871 Menel Wheel Velocity, ft/sec 1123 1021 987 65.3 66.3		Turbine:				ſ	e	
Pressure Ratio 1.59 1.49 1.46 3.2 30.3 Inlet Flow, lb/sec 48.1 42.3 39.4 1702 1967 Inlet Flow, lb/sec 48.1 42.3 39.4 1702 1967 Inlet Temperature, R 2011 2079 2326 3071 Inlet Pressure, Psis 4730 4290 4113 109 114 Temperature Drop, R 155.1 137 142.0 912 871 Mean Wheel Velocity, ft/sec 1123 1021 987 65.3 66.3		Number of Stages	7	2	2	1 25	1 47	
Inlet Flow, lb/sec 40.1 42.3 39.4 1702 1967 Inlet Temperature, "R 2011 2079 2326 3071 Inlet Pressure, psia 4730 4290 4113 109 114 Temperature Drop, "R 156.1 137 142.0 912 871 Mean Wheel Velocity, ft/sec 1123 1021 987 66.3		Pressure Ratio	1.59	1.49	1 46			
Inlet Temperature, R 2011 2079 2326 320 Inlet Pressure, psia 4730 4290 4113 109 114 Temperature Drop, R 156.1 137 142.0 912 871 Mean Wheel Velocity, ft/sec 1123 1021 987 66.3		Inlet Flow. 1b/sec	48.1	E 67	7 OL			
Inlet Pressure, psia 4730 4290 4113 109 114 Temperature Drop, "R 156.1 137 142.0 912 871 Mean Wheel Velocity, ft/sec 1123 1021 987 66.3		Inlet Temperature. °R	2011	2079	2226	1776		
Temperature Drop, "R 109 114 Near Wheel Velocity, ft/sec 1123 1021 987 66.3 66.3		Inlar Property nais			0767	0776		
Near Viet Velocity, ft/sec 1123 1021 987 67.5 66.3		Temperature Dron ⁹ D	1 2 2 1	4230	4113	109	114	
		Mean Wheel Velocity fr/sec	1122	101	142.0	216	1/9	
		Fffirtancv Taviary, algor	7 TY	1701	195	67.5	66.3	

CONFIDENTIAL

4)

- - **+** - -- - -- - -- - - - (U) Table II. Demonstrator Engine Operating Characteristics, Booster (Concluded)

d - -

د میں میں م

	50% Thrust r = 5,0	50% Thrust r = 6.0	50% Thrust r = 7.0	20% Thrust r = 5.0	20% Thrust r = 6.0	20% Thrumt r = 7.0
Two-Powition Nozzl e Coolant Flow, 1b/sec Thrust, 1b	1. <i>77</i> 625	1.75 640	1.70 640	1.42 406	1,35 408	1.27 402
fuel Turbopump						
Pump: Number of Pump Stages Speed, rpm Pressure Rise, psi Overall Efficiency, X	2 J1,195 2450 61.8	2 32,474 2630.6 58.2	2 33,591 2736 55.3	2 20,843 1092 49	2, 262 1183 44, 9	2 23,357 1233 42.0
<pre>[mpeller Tip Velocity, ist stage, it/sec [mpuller Tip Velocity, 2nd Stage, ft/sec Tumperature Rise, "R [nlet Flow, lb/sec</pre>	1445 1715 47.4 45.2	LJUJ 1785 58.2 39.1	1200 1847 184.1 34.8	700 1146 28.6 18.8	1224 37.1 16.4	1284 44.3 14.7
Turbine: Number of Stages Pressure Ratio Inlet Temperature, "R Inlet Pressure, psia Temperature Drop, "R Maan Wheel Velocity, ft/sec Efficiency, T Inlet Flow, lb/sec	2 15.34 2004 92.2 74.0 74.0	2 1,37 1949 196.5 1006 73.6	2 1, 37 2197 1905 1905 1041 73.4	2 1.27 1442 1442 666 666 16.8	2 1.28 1850 1850 721 65.7 65.7 15.7	2 1,29 2,11 712 89,9 89,9 65,6 65,6
Oxidizer Turbopump Pump: Minhor of Stagas	-	-	CONFIDENTIAL 1			
Number of Jeages Speed, rpm Pressure Rise, psi Efficiency, % Impeller Tip Velocity, ft/sec Temperature Rise, ^R Inlet Flow, lb/sec	16,576 2921 58,5 613 20.1 287.7	16,476 2862 59,4 610 19,3 295,7	16,365 2796 60,3 605 18,5 304,1	1 10, 431 1229 44, 9 385 112, 0	1 10,650 1279 1279 394 11.3 137_0	1 10,712 10,712 46.5 396 11.2 11.2
Turbine: Number of Stages Pressure Ratio Fressure Ratio Inlet Frow, 1b/sec Inlet Tempetature, °R Tinlet Pressure, psia Temperature Drop, °R Mean Wheel Velocity, ft/sec Efficiency, 7.	2 1.37 15.4 1534 79.8 723 64.6	2 1.36 18.2 1881 1952 91.8 62.8	2 1.37 18.2 1908 1908 714 61.6	2 1.27 1.42 1442 1955 55.5 55.5	2 1.3 6.9 1850 722 61.1 53.5	2 1.28 6.66 2211 713 713 52.1

2. Start, Shutdown, and Throttle Transients

A .A.

T.T.

3

(U) Estimated start, shutdown, and throttle transient data are presented in figure 16.

down, and Throttle Transient Data

C. LAYOUT AND SCHEMATIC

(U) The engine layout is illustrated in figure 17. The complete engine system schematic shown in figure 18 illustrates the helium supply system and the primary propellant flow paths and the interrelationship of all of the major components.

D. WEIGHT

(U) The estimated demonstrator engine weight based on lightweight rather than flightweight component designs is presented in table III. The targeted demonstrator engine weight is 3380 pounds. Component weights are discussed in more detail in the component sections of this report.

-

E. INTERFACES

(U) The ranges of temperature, pressure, and NPSH conditions required at the inlet to the fuel and oxidizer low-speed inducers are snown in figures 19 and 20.

31/32 (blank)

(U) Figure 17. Demonstrator Engine Layout

(U) Figure 17 --- Concluded

(This page is Unclassified)

Item	Estimated Weight, 1b	Targeted Weight, lb
Preburner and Hardware	92	90
Transition Case and Gimbal	324	370
Main Burner Injector and Hardware	99	115
Main Burner Chamber	410	425
Nozzle and Actuation	652	640
Fuel Turbopump	554	480
Oxidizer Turbopump	383	335
Low-Speed Inducers	348	235
Controls	230	305
Plumbing	290	310
Miscellaneous	50	75
Total	3432	3380

(U) Table III. Demonstrator Engine Estimated Weight

(U) Figure 19. Fuel Inlet Operating Region 38

.

weise.

1 12

(U) Figure 20. Oxidizer Inlet Operating Region

(U) A study selected the inlet propellant temperatures used for the design cycle analysis of the engine. Engine power requirements were found to vary significantly with engine inlet temperature. The required turbine inlet temperature varied approximately 96° R, and the fuel pump speed varied approximately 3000 rpm over the full range of inlet temperature specified for the demonstrator engine.

()) The highest proposed inlet conditions were selected for component design to assure the engine power requirements can be met under the most severe operating conditions.

(C) The relationship required between fuel temperature and oxidizer temperature, so that the maximum turbine inlet temperature $(2325^{\circ}R)$ will not be exceeded at 100% thrust is shown on figure 21.

(U) The engine/vehicle main structural interface is a ring flange on the thrust ball cone with a 6.0-in. diameter bolt circle. Eighteen equally spaced 0.2493-in. diameter holes are provided for bolt attachment of the engine to the vehicle. (Refer to Section IV, Paragraph B for a description of the gimbal thrust ball.)

(U) Gimbal acutators for control of pitch and yaw rate are attached by 0.5625-in. thread, UNF-3A, 12-point shoulder bolts to two gimbal actuator brackets on the main burner chamber pressure shell.

F. DESIGN CRITERIA

(U) Presented in Appendix I are the structural design criteria and limits for the major components of the XLR129-P-1 rocket engine.

G. SYSTEMS ANALYSIS

1. General

(U) System analyses of the demonstrator engine are being conducted throughout the program to define component design requirements, to estimate the capabilities of the integrated engine system, and to incorporate the results of component and engine tests.

(U) An initial analytical study was conducted to define those component design criteria that meet the design requirements of engine performance (as shown in table II) within the integrated engine system. These design data were derived by steady-state and transient analyses over the complete engine operating range using digital computer mathematical models.

UNCLASSIFIED

The steady-state analysis consists of studies that establish a cycle balance between design limitations and component performance. The transient studies define the engine design requirements based on dynamic requirements and operating sequences for engine start, throttling, propellant utilization, and shutdown.

(U) As component and engine test data became available, the steady-state and transient analyses have been updated as required to provide the design data necessary to improve the component and module designs.

(U) The system design resulted from an iterative optimization process between mechanical and anayltical studies, and component and engine test data. Using a digital computer, a cycle balance program defines component design point data and determines engine performance for the design and off-design point operating conditions. These design data are used in the completion of design layouts. Specific component limitations defined in the process of designing the individual components are again input into the cycle balance and the iteration is continued until an optimum design is established.

2. Initial System Analysis

É

a. Analysis Method

(U) A balance was established between component thermodynamic performance, mechanical design requirements, and engine operating requirements. This balance was established by using an optimization procedure in which component geometry and performance are varied to maximize mechanical design margin while meeting the engine operational goals. Table IV summarizes the various inputs, engineering considerations, and results of this process.

b. Analysis Criteria

(U) The engine characteristics presented in table I were used for the systems analysis of the demonstrator engine. They represent the targets toward which the demonstrator engine program are being directed. Technology limits used for the system analysis were set at the stateof-the-art level per data obtained in subscale and full-scale combustion testing under Air Force contract AF04(611)-11401 and turbopump testing under NASA contracts NAS8-20540 and NAS8-11714. Because an accurate estimate of the anticipated component performance was known prior to the design analysis, the engine was designed with confidence that the structural margins and performance levels will be sufficient to allow maximum flexibility of engine operation.

c. Steady-State Cycle Optimization

(U) The cycle balance program used for steady-state cycle optimization is configured to afford flexibility in the integration of component requirements over the thrust and mixture ratio ranges. Features include: (1) a means of selecting the optimum component design points, (2) a procedure for optimizing the turbine area match for required engine operating range, and (3) a method of evaluating component off-design performance effects on overall cycle performance.

UNCLASSIFIED

Component	Inputs or Specifications	Engineering Considerations	Results
Combustion Chamber and	Nominal vacuum thrust	Component per- formance avail- ble	Structural Dimen- sions - chamber size tube diameters, in-
Nozzles	Chamber pressure (target value)	Mechanical design limits	jector areas, etc.
	Limiting engine dimensions	Weight tradeoffs	Nozzle expansion ratio
	Minimum specific impulse efficiency	Cooling require- ments	Operating Perfor- mance - thrust, specific impulse,
	Nominal mixture ratio	Component inter- gration	propellant flow rates, cooling flows, etc.
	Durability requirements	λ	Operating limits
	Environmental conditions		Weight
Turbopump Power Package	Pressure require- ments	Component perfor- mance available	Structural Dimen- sions - pump and turbine diameters.
	Propellant flow rates	Mechanical design limits	injector areas, bearing sizes, etc.
	Thrust and mix- ture ratio range	Weight tradeoffs	Operating Perfor- mance - preburner
	-	Design and off-	temperature, pump
	Environmental and	design charac-	pressures, speeds,
	interface conditions	teristics of engine cycle	efficiencies, coolant flow rates, NPSH, etc.
		Component	
		integration	Operating limits

(U) Table IV. Cycle Definition Procedure

ati ١X

Weight

42 UNCLASSIFIED

é

Component laputs or Results Engineering Specifications Considerations Control Engine operating Design and off-Control point System modes design characterlocations istics of engine **Operating Limits** cycle Structural dimensions Engine thrust and System pressure mixture ratio Valve functions drops accuracy Mechanical design Valve sequences Environmental and limits - area turndown, valve interface condi-Valve area schedules tions accuracy, response, Weight etc.

(U) Table IV. Cycle Definition Procedure (Concluded)

(U) The initial step of the cycle balance program defines the chamber and nozzle geometry necessary to provide the required thrust at the nominal mixture ratio within the allowable design limitations. The main chamber combustion and nozzle efficiencies were maintained at a level consistent with the goals of the demonstrator engine program. The chamber pressure was fixed at the maximum level consistent with turbopump design limitations.

(C) The chamber geometry is established to provide 244,000-1b thrust for a booster stage vehicle application with an area ratio of 75:1.

(U) The nozzle coolant flow rates and passage sizes were varied until a balance was achieved between coolant pressure loss, nozzle weight, and coolant flow rate. The coolant pressure loss in the regenerative nozzles is important because it adds directly to fuel pump pressure. The nozzle skirt and transpiration coolant flow rates are important because these flows are not available for providing turbopump power. These flows also bypass the main injector, which increases the chamber mixture ratio and tends to decrease the overall specific impulse efficiency.

(L') The engine flow rates and pressures defined in the nozzle/chamber design calculations provide the basic data used to design the turbopump power package.

(U) The design approach taken in the cycle studies to obtain the required mixture ratio operating range was to use the extreme of the mixture ratio range as the power package design points.

(U) The fuel pressure requirement controls the power balance at the lowest mixture ratio, and the oxidizer pressure requirement controls the balance at the highest mixture ratio. In addition, the minimum available turbine power occurs at the highest mixture ratio where the fuel flow is at a minimum. At the extremes in mixture ratio, where one pump

controls the power match, the other pump is in an "overspeed" condition. Overspeed means that the pressure provided exceeds the pressure required to satisfy the flow conditions.

(C) A reduction in efficiency results when a centrifugal pump is operated at flow rates and rotor speeds other than the pump design point. By selecting the design point of the main pumps at their respective maximum flow conditions, two advantages are obtained. First, the best efficiency point of the pump coincides with the engine operating point where the respective pump is controlling the power balance; second, the reduced efficiency at the low flow condition (i.e., the other extreme mixture ratio point) tends to minimize overspeed and to minimize the control system corrections required. Thus, the fuel pump is designed for a mixture ratio of 5.0 and rated thrust, and the oxidizer pump is designed for a mixture ratio of 7.0 and rated thrust. Use of this cycle optimization technique results in appreciably reduced pump pressure and speed requirements.

(U) The basic turbopump design variables other than efficiency, namely turbine areas, pump impeller diameters, speed, and turbine inlet temperature, are optimized through an iterative procedure. Turbine areas and pump diameters are varied to meet the cycle pressure requirements within rotor speed and turbine temperature limitations.

(C) The maximum turbine inlet temperature occurs at the maximum mixture ratio point, where the preburner fuel flow is at a minimum. The maximum allowable temperature is approximately 2325°R and is determined by the turbine stresses, which vary as functions of the turbine diameter, speed, and fluid bending forces.

(U) Variation in the total turbine area (fuel turbine area plus the oxidizer turbine area) affects the total power through pressure ratio, whereas the ratio of turbine areas (fuel turbine area/oxidizer turbine area) affects the division of turbine power. As these areas are changed, the pump head requirements vary, and the pump impeller diameters are then sized to provide the required pump pressures within allowable design limitations.

(U) At a particular value of total turbine area, the ratio of oxidizer turbine area to fuel turbine area is established to balance the turbopump power at the maximum allowable turbine inlet temperature (high mixture ratio). With this area ratio fixed, the cycle is rebalanced at the low mixture ratio extreme. Because of the turbopump power trends, the fuel and oxidizer turbopump speeds increase at the low mixture ratio. If the speeds are greater than allowable, the pump diameters are changed to hold the speed within the mechanical limitations defined by critical speed, turbine wheel speed, and bearing DN.

(U) Because a modification to either the fuel or oxidizer pump at low mixture ratio will affect its operating requirements at high mixture ratio, the turbine area ratio at high mixture ratio may need to be changed. This process (changing components at one mixture ratio and checking the effects at the other mixture ratio) was continued until an optimized cycle balance was obtained.

(U) In balancing the engine cycle, the components that maximized chamber pressures within the restraints of pump speed and pressure and turbine maximum temperature were selected.

(U) Combustion performance and injector characteristics are considered in conjunction with control pressure loss scheduling. In the preburner and main burner injector designs, the major performance considerations are the fluid velocities, the momentum exchange between the fuel and oxidizer, and the injector pressure potentials for combustion stability. In the control system designs, the major considerations are pressure drop for flow control potential and valve turndown ratio. Off-design performance characteristics are used to obtain basic injector and control design data to ensure that sufficient pressure drop to satisfy both the stability and control system pressure requirements is provided. At each balanced operating point the required injector and control pressure drop is maintained or exceeded.

(U) Design characteristics of the low-speed inducers were also determined within the cycle balancing effort. The inducer design discharge pressure must satisfy the main turbopump NPSH requirements and the estimated line losses between the low-speed inducers and pump.

(U) The low-speed inducer diameter and drive turbine speed were selected to provide the necessary inducer discharge pressure and turbine efficiency while remaining consistent with the available low-speed inducer inlet NPSH and inducer suction characteristics. The turbine areas were sized to provide sufficient energy to drive the inducers without increasing the maximum pressure of the main pumps.

d. Transient Analysis

(U) The transient characteristics of the XLR129-P-1 engine were investigated to identify any component design limits and to define the optimum control sequences to provide rapid, safe, and repeatable start throttling and shutdown transients. Variations in environmental conditions, such as inlet and ambient temperatures and pressures, were considered. Evaluation of the effects of engine component performance and control system on the system transients are an integral part of the design process.

(U) The basis for the control system used in the System Analysis was a detailed controls study performed under Contract NAS8-11427. This study evaluated several control systems and 17 control points for an advanced high pressure rocket engine system using a preburner cycle.

(1) Throttle Transient Analysis

(U) Transient analyses of the engine system within the extremes of main stage thrust and mixture ratio define the engine and control system dynamics, and define engine transient response and component protection required during rapid transients.

> 45 CONFIDENTIAL (This page is Unclassified)

(C) Engine throttle transients were simulated using representative control systems that use engine parameters as input and/or feed back to the control areas. The preburner oxidizer valve was selected to provide closed-loop thrust control by using oxidizer and fuel flowmeter flows (summed) as a thrust indication. The ratio of the flowmeter flows was fed back to the main chamber oxidizer valve to provide closed-loop mixture ratio control. Accelerations and decelerations between idle and rated thrust in 2 seconds were simulated at engine mixture ratios of 5 and 7. Three second mixture ratio excursions between 5 and 7 were simulated at 100° thrust. Throttling transient analysis revealed no limitations that would require hardware or control mode changes from that established during steady-state analysis.

(2) Start and Shutdown Transient Analysis

(U) Similar mathematical models were used to simulate the start, throttling and shutdown modes of operation. Additional calculations in the start and shutdown simulations include: (1) the propellant filling processes, (2) fluid properties for phase transitions from gas to twophase to liquid flow, (3) preburner and main chamber ignition, and (4) low-speed performance of the main turbopumps and low-speed inducers. Similar models have been used extensively during Phase I, Contract AF04(611)-11401, Module Design task and also in conjunction with the preburner and staged combustion test programs. A summary of the conclusions of these studies is presented below:

- (a) Start Transient
- (C) 1. The engine can be safely started to 20% thrust in approximately 2 seconds using a time-sequenced control method.
- (U) 2. The orifice restriction in the primary flow path of the preburner oxidizer valve must be made smaller than that established during steady-state cycle analysis to reduce the preburner temperature spike when the primary cavity fills.
- (U) 3. The use of helium purges in the secondary cavity of the preburner oxidizer injector and the main oxidizer injector is recommended to prevent back flow of the combustion product predicted to occur during the start transients.
- (b) Shutdown Transient
- (C) 1. A shutdown analysis showed that the engine can be shut down safely from 20% thrust at all mixture ratios by using a single time-based propellant valve sequence that schedules all shutoff valves to their fully closed position in a maximum of 1.5 sec.
- (U) 2. The valve sequence can be modified to adjust the rate of preburner temperature decay during shutdown, if necessary for turbine stress and cycle life considerations.
- (U) 3. The shutdown transient analysis revealed no limitations that would require hardware or control mode changes from that established during steady-state cycle analysis.

3. Special Design Cycle Studies

a. Design Point Trade Studies

(U) Trade studies were made to establish the sensitivity of engine characteristics to component performance levels to identify the critical component characteristics and minimize any undesirable effects. The trade factors presented in table V were determined by varying each parameter separately and rematching engine components to provide maximum chamber pressure within component limitations and cycle ground rules. The change in preburner temperature required to maintain a constant chamber pressure with variations in component performance was also calculated by using the trade factor for chamber pressure and turbine temperature defined in table V.

(U) The turbine area changes required to reoptimize (rematch) the cycle for full mixture ratio range at the indicated changes in chamber pressure were also established. For example, if main fuel turbine efficiency were increased 1 point, chamber pressure could be increased 12.6 psia over the full mixture ratio range provided the fuel turbine area was reduced by 0.25% and the main oxidizer turbine area was increased by 0.87%. The trade factors presented in table V may be assumed to be linear for small component variations.

b. Maximum Oxidizer Pump Discharge Pressure

(C) An analytical study was made to determine the optimum method of obtaining a maximum chamber pressure. Engine design cycles were established with components matched for maximum allowable oxidizer pump discharge pressures of 6500, 7000, and 7250 psia.

- (C) The following major factors were noted:
 - The maximum excess thrust capability is available for an engine designed for a peak oxidizer pump discharge pressure of 7050 psia.
 - 2. The maximum design chamber pressure increases with increasing maximum oxidizer pump discharge pressure.
 - 3. As the peak oxidizer pump discharge pressure is decreased, the assumed fuel pump speed limit of 48,000 rpm is approached at 100%, r = 7.
 - With increasing oxidizer pump discharge pressure, the assumed preburner temperature limit of 2325°R is approached at 100%, r = 5.
 - 5. Overall specific impulse at a mixture ratio of 5 decreases with increasing maximum oxidizer pump discharge pressure as a result of increased transpiration cooling flow.

		(U) Table V.	XLR1Z9-P-1 De	sign Trades		
Des	ign Change	Magnitude of Change	Chamber Pressure psia	Preburner Temperature – °R P _c = Constant	Main Fuel Turbine Area, 7	Main Oxidize Turbine Area 7
1.	Prebuner Temperature	+ 10°R at r = Max	.+ 6 . 9	1	+ 0.48	+ 0.50
2.	Firc ^r Stage Fuel Pump Efficiency	+ 1 point	+ 18.0	- 26.0	- 0.37	+ 1.13
з.	Second Stage Fuel Pump Efficiency	+ 1 point	+ 8.1	- 12.0	- 0.08	+ 0.76
4.	Main Fuel Turbine Efficiency	+ 1 point	+ 12.6	- 18.0	- 0.24	+ 0.87
5.	Fuel Side Pressure Loss (Pump discharge through preburner injector)	+ 10 psi at r = Min	- 3.3	CONFIDENTIAL + 4.7	+ 0.36	+ 0.48
6.	Fuel Turbine Upstream Housing Loss	+ 10 psi at r = Min	- 3.0	+ 4.3	+ 0.08	- 0.19
7.	Fuel Turbine Downstream Housing Loss	+ 10 psi at r = Min	- 5.9	+ 8.5	+ 0.13	- 0.37
8	Main Oxidizer Pump Efficiency	+ 1 point	+ 8.3	- 12.0	+ 0.49	- 1.24
9.	Main Gxidtzer Turbine Efficiency	+ 1 point	1.9 +	- 13.0	+ 0.57	- 1.00
10.	Oxidizer Side Pressure Loss (Pump discharge through preburner injector)	+ 10 psi	- 3.0	+ 4.3	- 0.17	- 0.21

(U) Table V. XLR129-P-1 Design Trades (Concluded)

20.00

a	sign	Magnitude of Change	Chamber Pressure, psia	Preburner Temperature – [•] R P _c = Constant	Main Fuel Turbine Area, 7	Main Oxidiz Turbine Are X
11	Maximum Oxidizer Pump Discharge Pressure	+ 100 psi at r = Min	+ 13.8	- 20.0	+ 0.76	+ 2.60
12	. Maximum Fuel Pump Pressure Rise	+ 100 psi at r = Min	+ 21.0	- 30.0	- 3.0	- 5.3
13	. Preburner Pressure Loss (Upstream of Turbine)	+ 10 ps1	- 6.0	CONFIDENTIAL + 8.6	Not Available	Not Available
14	 Main Burner Hot Gas Duct Loss (Downstream of Turbine) 	+ 10 ps1	- 10.0	+ 14.0	Not Available	Not Available
15	. Preburner/Turbine Bypass Flow	- 1.0 lb/sec	+ 22.0	- 32.0	+ 1.6	+ 1.6

CONFIDENTIAL

- - -

-

بیدیں 12 - 12 -

(C) Consideration of all the above factors indicates that an engine designed for a maximum oxidizer pump discharge pressure of 7050 psia would provide the optimum design. Although a slight loss in specific impulse would result at a mixture ratio of 5, no significant loss will be encountered at a mixture ratio of 6 and above, and the chamber pressure level attainable would be consistent with present design goals. An engine designed for higher oxidizer pump pressures could operate at slightly higher chamber pressure, but the specific impulse at mixture ratios of both 5 and 6 and excess thrust capability would be reduced.

c. Transistion Case Coolant Flow Source

(U) A design analysis of the transition case cooling passage indicated that structural problems may exist during the shutdown transient if the cooling is obtained from the preburner fuel valve discharge. This cycle analysis confirmed the acceptability of the alternative supply source located at the transpiration supply heat exchanger discharge.

(C) For the analysis, the transpiration supply heat exchanger configuration was maintained and its cooling flow rate was increased by the level of transition case cooling flow. The increased cooling flow at 100% thrust, mixture ratio of 7, did the following: (1) reduced the transspiration wafer inlet temperature 63°R, (2) reduced required wafer cooling flow 0.25 lb/sec, (3) increased specific impulse 0.3 second, and (4) decreased required preburn temperature 18.2°R.

(U) Rerouting of the flow reduced the maximum available fuel low-speed inducer turbine power 16% because of the increased turbine inlet line loss (higher flow) and decreased turbine temperature.

.....

- ----

- - --

•··•

- 17

ंग्रें

d. Two-Position Nozzle Flow Source

(U) This study investigated three engine locations for supplying the two-position nozzle coolant flow with and without a control valve. The locations investigated were: (1) the fuel pump interstage, (2) the fuel low-speed inducer 'scharge, and (3) the fuel preburner supply. For operation with the control valve in the system, the minimum coolant flow was scheduled into the nozzle. For operations without a control valve, an orifice was sized to provide the minimum coolant requirements at a critical engine operating point and allowed overcooling at all other operating conditions.

(U) The fuel pump interstage was chosen to supply cooling flow for the two-position nozzle because (1) acceptable nozzle cooling was provided without requiring a control valve, (2) the source was insensitive to variations in engine inlet conditions (the LSI tapoff was very sensitive to them), and (3) the slight penalty in chamber pressure and overall impulse efficiency caused by the overcooling characteristic inherent in the orifice configuration was acceptable.

(U) The engine characteristics with the three candidate locations are presented in figures 22 through 27.

(U) Figure 22. Effect of Pump Interstage Tap-Off Location on Lightweight Heat Exchanger Coolant Valve

.

- jan dis

¥

(U) Figure 27. Effect of Fuel Preburner Supply Tap-Off Location on Engine Impulse Efficiency

H. PERFORMANCE DATA

(C) The booster configuration operating at sea level, utilized the nozzle in the retracted position resulting in an expansion ratio of 35, which improves the thrust and specific impulse. At an altitude of 20,000 ft the two-position nozzle is translated to the extended position to provide an area ratio of 75 for improved altitude engine specific impulse. Use of the two-position nozzle provides nearly optimum performance for each operating regime. Altitude performance, i.e., thrust and specific impulse, for the booster configuration is presented in figure 28. The variation in sea level specific impulse with mixture ratio is shown in figure 29. The vacuum specific impulse variation with thrust and mixture ratio is given in figure 30.

CONFIDENTIAL

