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UNCLASSIFIED Pratt &Whitney Aircraft
PWA FR-3337

PATENT SECRECY NOTICE

Material in this publication relating to

LAMINATED CHAMBER COOLING MEANS AND A SLOT
TUBE INJECTOR CONCEPT

reveals subject matter contained in U. S. Patent Application Serial
No. 319,047 and 725,954 entitled "High Pressure Rocket and Cooling
Means" and "Slot Tube Swirler Injector," respectively, which have
been placed under Secrecy Orders issued by the Commissioner of Patents.
These Secrecy Orders have been modified by a SECURITY REQUIREMENTS
PERMIT.

A Secrecy Order prohibits publication or disclosure of the invention,
or any material information with respect thereto. It is separate and
distinct, and has nothing to do with the classification of Government
contracts.

By statute, violation of a Secrecy Order is punishable by a fine
not to exceed $10,000 and/or imprisonment for not more than two years.

A SECURITY REQUIREMENTS PERMIT authorizes disclosure of the invention
or any material information with respect thereto, to the extent set forth
by the security requirements of the Government contract which imposes the
highest security classification on the subject matter of the application,
except that export is prohibited.

Disclosure of these inventions or any material information with respect
thereto is prohibited except by written consent of the Commissioner of
Patents or as authorized by the permits.

The foregoing does not in any way lessen responsibility for the
security of the subject matter as imposed by any Government contract
or the provisions of the existing laws relating to espionage and national
security.
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FOREWORD

(U) This Milestone Report is issued %: the time in the program when
the design of all major components a4 well as the dejign of the
demonstrator engine system has been completed. It presents the design
approach, mechanical description, ancr operating characteristics of
the XLR129-P-1 engine and each major component. This report is issued
as a technical report in compliance with the requirements of Contract
F04611-68-C-0002. Classified information has been extracted from
documents listed under References.

(U) This publication was prepared by the Pratt & Whitney Aircraft
Florida Research and Development Center as PWA FR-3337.

(U) This Technical Report has been reviewed and is approved.

Robert E. Probst
Captain, USAF
Program Manager
Air Force Rocket Propulsion Laboratory
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UNCLASSIFIED ABSTRACT

(U) This report describes the design of the XLR129-P-l Demonstrator
Rocket Engine and its principal components. The program is being
conducted by Pratt & Whitney Aircraft under Air Force sponsorship at
the Florida Research and Development Center. Design of all components,
the second of five program phases, has been completed. Included in the
report is the design approach, mechanical description, and operating
characteristics for each component. The engine is designed to operate
with liquid oxygen and liquid hydrogen propellants, uses the staged
combustion cycle, incorporates variable thrust, and variable mixture
ratio capability. The XLR129-P-l engine, having a high area ratio nozzle,
is designed to be reusable as in aircraft engine practice, and provides
250,000 pounds thrust in vacuum. The program started 6 November 1967,
and is planned for 54 months. The major program objectives include:
(1) design of the components and engine system with a series of component
tests to support the design effort, (2) development of the components
to qualify them for engine use and to demonstrate the life of life-
limited sub-coiponents, and (3) a series of engine tests to demonstrate
operational capabilities.
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PREFACE

(U) This volume contains introductory and summary material relating to
the requirements of the XLRI29-P-l Demonstrator Rocket Engine Program
and to the components and characteristics of the engine system. Detailed
component descriptions are contained in Volume 2. Volume 3 contains
data pertaining to the control system, demonstrator engine mockup, and
plumbing system. Also included in Volume 3 are appendixes containing
structural design criteria and data.
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CONFIDENTIAL
SECTION I

INTRODUCTION

A. GENERAL

(U) The Air Force XLRI129-P-1 Reusable Rocket Engine Program is an Advanced
Development Program that covers a 5 R4-month period starting 6 November
1967 and endtng b May 1972. 'he overall objective of this program is to

demonstrate the perferdyance and mechanical integrity of a 250K, oxygen-
hydrogen, reusable rocket engine having characteristics outlined in

table I.

(U) Table I. Demonstrator Engine Characteristics

Nominal Thrust 250,000-lb vacuum thrust with area ratio of 166:1

244,000-lb vacuum thrust with area ratio of 75:1
209,000-lb sea level thrust with area ratio of 35:1

Minimum Delivered 96' of theoretical shifting Is at nominal thrust;
Specific Impulse 94•' of theoretical shifting Is during throttling

Efficiency

Throttling Range Continuous from 100 to 20% of nominal thrust over

the mixture ratio range

Overall Mixture Engine operation from 5.0:1 to 7.0:1
Ratio Range

Rated Chamber 2740 psia CONflENTIAL
Pressure

Engine Weight 3520 lb with flight-type actuators and engine
(with 75:1 nozzle) command unit

3380 lb without flight-type actuators and engine

command unit

Expansion Ratio Two-position booster-type nozzle with area ratios
of 35:1 and 75:1

Durability 10 hours time between overhauls, 100 reuses,
300 starts, 300 thermal cycles, 10,000 valve

cycles

Single Continuous Capability from 10 seconds to 600 seconds
Run Duration

Engine Starts Multiple restart at sea level or altitude

Thrust Vector Amplitude: t7 deg
Control Rate: 30 deg/sec

Acceleration: 30 rad/sec2
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(U) Table 1. Demonstrator Eneine Characteristics (Continued)

Control Capability t3 accuracy in thrust and mixture ratio at
nominal thrust. Excursions from extreme to
extreme in thrust and mixture ratio within
5 seconds.

Propellant LO.,: 16 ft NPSH from I atmosphere boiling
Conditions temperature to 180'R

LH2 : 60 ft NPSH from 1 atmosphere boiling
temperature to 45'R

Environmental Sea level to vacuum conditions
Conditions Combined acceleration: 10 g axial

with 2 g transverse, 6.5 g axial
with 3 g transverse, 3 g axial
with 6 g transverse CONFlONTIAL

Engine/Vehicle The engine will receive no external power, with
the exception of normal electrical power and
1500-psia helium from the vehicle

(U) The XLRI29-P-1 demonstrator engine program schedule is shown in
figure 1. The program has been divided into five tasks. Task I which has
already been completed, generated test and analytical data to complete the
necessary technol0gy to design the engine and components. During task 2,
all the components and the demonstrator engine were designed. This mile-
stone report describes the results of work accomplished during task 2
and presents the mechanical description, operating characteristics, and
design approach of each major component and the demonstrator engine.
During task 3, components will be fabricated and tested to qualify them
for engine use. Task !4 will be the integration of components into the
demonstrator engine and testing of the demonstrator engine. A flight
en-ine will be defined in task 5.

Tao I (Supportin9 Test Wid Anahssil

Tad2 4

Tadi 4 [,Engine Test

To*i 5 [Fligt Engin einto

II , I I ,I I

I Now
1967 1968 1969 1970 1971 1972

CALENDAR YEARS FD 27857C

(U) Figure 1. XLRl29-P-I Demonstrator Engine Program Schedule
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3. PROGRAM TASKS

(U) The entire pro,;ram consists of five tasks and specific subtasks as
fol l ows;

Tak I - Supportine Oma and Analym

Subtasks

1.1 - Fixed Fuel Area Preburner Injector Evaluation

1.2 - Roller Bearing Durability Tests

1.3 - Pump Inlet Evaluation

!.A - Nozzle Fabrication Investigation

1.3 - Controls Comwponent Test

Taok 2. Desgn

Subtasks

2.1 - Preburner Injector

2.2 - .Main Burner Injector

2.3 - Nozzles

2.4' - :!ain Burner Chamber

2.5 - Transition Case

2 .6 - Fuel furbopump

2.7 - Oxidizer Turbonumn

2.S - Fuel Low-Sneed Inducer

2.9 - Oxidizer Low-Speed Inducer

2. 10 - Control Syvstem

Task 3 - Component Development

Subtasks

3.1 - PIreburner Injector

3.2 - "air, Burner Injector

3.3 - Nozzles

3.4 - Main Burner Cha-.ber

3
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Subtasks

3.5 - Transition Case

3.6 - Fuel Turbopump

3.7 - Oxidizer Turbopump

3.8 Fuel Lcw-Speed Inducer

3.9 - Oxidizer Low-Speed Inducer

3.10- Control System

Tak 4 - Engine Integnion and Dermonmation

Tak S. FlRit Engine Definition

4

UNCLASSIFIED



SECTION II
SUMMARY

Page

A. Demonstrator Engine ..................... 5
B. Preburner Injector ...... ............. . 7
C. Transition Case ...... ... ........ .... 9
D. Main Burner Injector .................... 10
1. Main Burner Chamber .............. ...... 11
F. Primary Noz le .. ................. . . 12
C. Two-Position Nozzle and Translating Mechanism .......... ... 13
H. Low-Speed Inducer .............. ...................... ... 14
I. Fuel Turbopump . . .................. .14
J. Oxidizer Turbopump ............... .................. .... 15
L Control System ............... ...................... ... 19



CONFIDENTIAL

SECTION II
SUMMARY

A. DEMONSTRATOR ENGINE

1. Backlond

;C) Early studies of advanced liquid rocket engines by Pratt & Whitney
Aircraft ahowed that high combustion chamber pressure could provide high
performance and high thrust per unit area of the exhaust nozzle. These
studies also showed the critical technology areas were cooling and turbo-
machinery. Air Force contracts directly related to the high-pressure
rocket engine investigations are: AF04(611)-7435 High-Pressure Rocket
Engine Feasibility, AF04(611)-10372 Staged Combustion Research, and
AFO-(611)-11401 Advanced Cryogenic Rocket Engine. NASA contracts directly
related to high-pressure rocket engine investigations were: NAS8-11427
Design Study Engine System for Upper Stages of Uprated Saturn, NAS8-11714
Design, Fabricate, and Test a Breadboard Liquid Hydrogen Pumap, and
NASS-20540 Liquid Oxygen Turbopump Study. The Advanced Engine Design
Study, conducted under NASA contract NAS8-l1427, showed that a single pre-
burner, staged-combust ion cycle, high-pressure, oxygen-hydrogen, bell-
nozzle rocket engine provided flexibility, envelope, and the high per-
formance required for future advanced vehicle applications. During
this NASA contract, detailed cycle studies indicated a single-preburner,
staged-con'bustion cycle provided the best compromise between delivered
specific impulse, weight, and complexity. These cycle studies also
showed that a 5 to 7 mixture ratio range capability and a 10:1 throttling
range could be provided with a minimum number of control points. The
exploratory development programs demonstrated the feasibility of these
component concepts to permit the initiation of an Advanced Development
Program. During Phase I of the Air Force Advanced Development Program
for a High Performance Cryogenic Rocket Engine under Contract AFO4(611)-11401,
a two-position, translating bell-nozzle concept was developed that provided
a more compact bell-nozzle engine. At the end of Phase I, which ended
30 September 1967, the high-pressure engine had evolved to a flexible design.
By fitting nozzle skirts of different area ratios, the same engine could be
optimized for a variety of missions. Today the engine design shown in fig-
ure 2 offers high performance, altitude compensation, versatility and long
life in a compact engine package.

5

CONFIDENTIAL



CONFIDEN11AL

Oxmka. Turbopump

c~hitif Ition

Fcam 733

(U) Fgure2. XLi29--1 Deonstator ngin

Ineco

-, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Mi Burner. ugns~ ~(~oC f~(

'OSSW~fl a MO,,v'Mo U:~Cv *~u.ENinfectorin
ILO CV UC CO CS'03 OF~ CO FIDE IIU



SV CONFIDENTIAL
2. Owsin

(U) During Phase II, covering the present contract (F04(611)-68-C-0002),
the design of the 250K demonstrator engine and its major components, in-
cluding plumbing, has now been completed. Design of the enginc and major
components is based on proven test technology; namely, all the major com-
ponents such as the combustion devices and turbomachinery have been tested
at either the 250K or 350K thrust level, demonstrating their feasibility.
Design studies were also conducted on the demonstrator engine in the areasV of engine mockup and plumbing. A full-scale mockup of the demonstrator
engine was used as a working tool during design. Numerous design itera-
tions have been conducted on the mockup for component arrangement and
plumbing. A satisfactory component arrangement for the engine mockup
has been established. In the area of the engine plumbing, satisfactory
designs and arrangements have been established for the fuel pump discharge
lines, the preburner fuel inlet line, the main burner oxidizer inlet line,

S-*-• and associated components such as actuators, rods, and small connectors.
4 Engine system analyses have also been conducted during the program to

define component design requirements, estimate capabilities of the
integrated engine system, and to include the results of component and
engine tests. These analyses include: steady-state analysis, transient
analysis, shutdown analysis, special design-cycle studies, and generation
of performance data.

-- PREBURNER INJECTOR

(C) The preburner is an oxygen-hydrogen combustor supplying hot gases to
drive the oxidizer and fuel pump turbines. Because preburner gases are
used to drive the fuel and oxidizer pump turbines, the design goal tem-
perature profile is 150OR peak-to-average to permit operating the turbines
at the maximum allowable average temperature. The design of the preburner
injector consists of 254 dual-crifice, tangential-swirler oxidizer ele-
ments, with concentric fuel annuli around each oxidizer element. All are
arranged in a hexagonal pattern shown in figure 3. This design has demon-
strated a peak-to-average combustion temperature profile of 76*R in a
radial plane at an average gas temperature of 2388 0R. This fixed-area,
fuel-injection design concept is feasible because density changes occurring
in gaseous fuel allow throttling while simultaneously maintaining a suit-
able injection velocity. However, because liquid oxygen is essentially
incompressible, the dual-orifice principle is applied to a slot-swirler
element to provide suitable injection velocity over the throttled range.
The preburner-injector housing has 28 slots to allow gaseous hydrogen to
flow from the outer fuel manifold to the manifold behind the faceplate.
Primary oxidizer flow enters the primary oxidizer manifold through six
equally spaced ports in the preburner-injector housing. Secondary oxidizer

-:7 flow arrives at the secondary oxidizer manifold directly from the preburner
oxidizer valve. The porous injector faceplate is fabricated from Rigimesh.
Ignition systems will be integral spark igniter-exciter units that are
mounted on both the preburner and main chamber. Two'systems will be pro-
vided for the preburner and two for the main chamber to provide total
spark redundancy.

7
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C. TRANSITION CASE

(C) The transition case consists of four spheres; one main sphere and
three small spheres whose centerlines intersect the main sphere at
right angles. The smaller spheres act as the attachment points for
three major components; the preburner injector, the oxidizer turbopump,
and the fuel turbopump. The main sphere centerline coincides with theI engine thrust axis. T1he entire assembly is a pressure vessel. The
transition case contains internal ducting that routes preburner dis-
charge gases through the fuel and oxidizer pump turbines and to the main
burner injector as well. The goal of the transition case subtask is to
demonstrate the structural adequacy of the engine transition case when

*- operating at an internal pressure of 4856 psia and with an internal gas

"temperature as high as 2325*R. A full-scale mockup of the primary struc-
ture of the transition case is shown in figure 4. With incorporation of
the preburner injector, fuel turbopump, and oxidizer turbopump, the transi-
tion case is a self-contained powerhead supplying the main-burner thrust
chamber with high-pressure propellants necessary to produce the design
thrust. Moreover, it serves as the primary combustor stage for the staged-

*- combustion cycle. Internal ducting of the transitiorn case splits the hot
fuel-rich gases from the preburner to provide adequate gas flow to each
turbine. The fuel turbine requires about twice the mass flow required to
drive the oxidizer turbine. Cooling liners, positioned between the outer
case and the hot-gas flowpath, are included to keep the outer case tem-
perature below 540R. A satisfactory design of the transition case has

, .w- evolved and meets all establi!.hed design criteria for this important
component.

KV OhnidiAx
SFu Pup •Pfumpr

In~w
Mounting

Flange

Oxidize
Fuel Pump Pump

Main Burner

Mounting
Flange FO 29114A

(U) Figure 4. Transition Case Full-Scale Mockup

C F T9•-., CONFIDENTIAL



[ CONFIDENTIAL
D. MAIN BURNER INJECTOR

(U) The main burner injector introduces, atomizes, and mixes liquid
oxygen with the hot, fuel-rich turbine discharge (preburner combustion
products) so efficient and stable combustion is achieved over the full
operating range of thrust and mixture ratios. The main burner injector
design consists of the oxidizer manifold and housing, spraybar-type internal
manifolds, oxidizer-injection elements, and the porous faceplate as shown
in figure 5. The main injector housing consists of an oxidizer-inlet
horn, the oxidizer manifold, and crossover passages to the spraybars.
The spraybar injector body consists of 48 individually machined spray-
bars brazed into the oxidizer-manifold ring. The spraybars are individually
supported at the outside diameter only, thus permitting free thermal growth.

- This approach simplifies manufacturing and provides a lightweight design.
Forty-eight radial spraybars are divided into three groups; 12 long spray-

bars equally spaced around the circumference, 12 medium spraybars equally
spaced between the long spraybars, and 24 short spraybars equally spaced

between the medium and long spraybars. This arrangement yields the maxi-
mum number of spraybars consistent with mechanical considerations, and
results in good oxidizer-element density and uniform radial flow distribu-
tion. Self-atomizing injection elements are spaced along the spraybars to
obtain good atomization and distribution. The fuel faceplate is made of

Rigimesh, which forms the support structure as well as the porous face.
The faceplate directs approximately 92% of the hot, fuel-rich, preburner

combustion gases through slots surrounding the oxidizer-injector elements.
The remainder of the gas passes through the porous faceplate. Major com-
ponents are assembled by brazing and welding techniques that simplify
manufacturing the components. This main-burner injector configuration
represents a minimum overall length and weight design that satisfies the

demonstrator engine cycle requirements.

t[-A

•L A
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(U) Figure 5. Main Burner Injector Configuration
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I. MAIN BURNER CHAMBER

(C) The main burner chamber contains the pressure resulting from propellant
combustion, serves as the structural member supporting the primary and
two-position nozzles, transmits thrust, and absorbs gimbal actuator loads.
rho overall goals of the main burner chamber subtask are to design, build,
and demonstrate through full-scale testing, performance and operational
capability of a lightweight, durable, thrust chamber for use in the demon-
strator engine program over the specified throttling and mixture ratio
ranges. Ignition capability must also be demonstrated at both sea level
and altitude conditions. The main burner chamber design consists of two
main components; an outer pressure shell and a transpiration cooled,
copper wafer, chamber liner shown in figure 6. The outer pressure shell
also provides the coolant manifold and serves as a mount for attaching
the chamber liner in two-sections. Copper cylindrical wafers forming the
chamber are divided into 28 zones. Each wafer consists of front and back
plates. A zone is a collection of composite wafers fed by interconnected
zone coolant manifolds. The chamber liner consists of a stackup of 512
0.040-inch thick copper wafer halves brazed together. Spiral groove pat-
terns photoetched into one side of each wafer-half provide the path from
the zone coolant manifold to the inside diameter of the chamber where
they open into the main burner chamber. Composite wafers are constructed
of two half-plates brazed at the unetched center plane with an axial
thermal relief slot in the front wafer-half. By locating the slot in this
plane, the heat exchanger spiral grooves on the opposite face are not
affected. The addition of axial thermal strain relief slots minimizes
the wafer thermal strain level by allowing free axial growth at the hot
wall of the chamber, thus producing an acceptable low cycle-fatigue life.

1096
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F. PRIMARY NOZZLE

(C) The function of the primary nozzle is to contain the combustion gases
and allow their shock-free expansion from an area ratio of 5.3:1 to 35:1.
High-pressure hydrogen from the fuel pump is supplied as coolant to two
regeneratively cooled portions of the primary nozzle. A second function
of the primary nozzle is to provide structural support for the two-position
nozzle. A third function is to act as heat exchangers to condition the
hydrogen supplied to the transpiration-cooled chamber and the preburner
injector. The primary nozzle design consists of two tubular, regeneratively-
cooled, heat exchangers shown in figure 7. The downstream heat exchanger
is double pass, and supplies hydrogen to the hydrogen inducer turbine and
transpiration-cooled main burner chamber. The upstream heat exchanger
is single pass, and cools the nozzle from an area ratio of 5.3 to 18 using
approximately 85 percent of the pump discharge hydrogen flow prior to -
delivery to the preburner injector. Both heat exchangers are shaped
from tubes forming the desired nozzle contour. Based upon low cycle-fatigue
data, Lnconel 625 (AMS 5666B) was selected for heat exchanger tube materia...
This material is easily welded and may be used after welding without further
heat treatment. The support for the two-position nozzle is accomplished
by the rear thrust bearings for the jackscrew actuators being supported
in a circumferential ring at the midspan of the transpiration heat ex-
changer.

0.010 Wall Thickness Weight: 291 lb

S~~346 Tubes -

0.012002 Walahikns
nInlet Manifold .a 0.012 Wall Thickn

(Preburner Supply ,-

"HTranschanto -1080 Tubes

Exit Manifold Tunrn0.020 Wap-- ~~(Preburner Supplyikns
Hs Exchanger)}J

(Tran rairstion Supply
HHet Exchanger)

• • Exit Manifold Turnaround Cap.-
i (Transpiration Supply

Heat Exchanger)

FD 37255

(U) Pigure 7. Primary Nozzle Configuration

12

CONFIDENTIAL



i
CONFIDENTIAL

G. TWO-POSJTION NOZZLE AND TRANSLATING MECHANISM

(C) The function of the two-position nozzle in the extended position
is to contain the combustion gases and allow additional shock-free ex-
pansion from an area ratio of 35:1 to 75:1. The two-position nozzle
translates to provide a compact engine package in the retracted position.
The translating mechanism is designed to provide positive extending
and retracting of the two-position nozzle during engine operation. The
two-position nozzle design consists of a circumferential coolant dis-
tribution manifold, a smooth nozzle outer skin with circumferential
stiffening bands, and a corrugated inner nozzle skin shown in figure 8.
The corrugated inner skin forms longitudinal coolant passages. The two-
position nozzle has a baseline contour starting at an area ratio of 35:1
and extends to a ratio of 75:1. This nozzle is designed to be dump
cooled with low-pressure hydrogen taken from the fuel pump interstage.
During sea level and low altitude operation with the nozzle retracted,
coolant flow is not required. When the nozzle is extended, coolant is
expanded through small nozzles at the ends of the corrugated coolant
passages. Expansion of this warm hydrogen gas produces a specific impulse
comparable to the main stream specific impulse. The nozzle is designed
to withstand the maximum thrust pressure load plus a 10 g axial maneuver
load. The translating mechanism provides precision positioning in the
extended and retracted positions. Positive locking devices maintain the
nozzle position when the engine is not operating.

Ma1erid Incofel 6235

Outer Sheet Sn"eth

Outer Sheet 0.016
Thicknesa

Inner Sheet Carrugtd

Inner Sheet .01O i • m
Thwckne~s

Number 360
'A - .crrugiens

Inle Die 46 in.

Ext DIe 66 in.

en 50 in.
Weight 227 lb

(See Level)

Weight (Altitude) 186 1b GS 12306

(U) Figure 8. Two-Position Nozzle Design
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H. LOW SPEED INDUCERS

(C) The function of the fuel and oxidizer low-speed inducers is to
supply propellants to the main turbopumps at a pressure (NPSH) sufficient
to prevent cavitation. This permits the vehicle propellant tanks to be
maintained at a lower pressure thus saving tank and vehicle weight.
The overall goal of the fuel and oxidi7er low-speed inducer subtasks is
to demonstrate performance and operaticnal capability for use in the demon-
strator engine. The three-bladed fuel inducer is driven by a siagle-stage
partial-admission turbine. The fuel inducer operates independently of the
main turbopump and at a speed lower than the main turbopump. This permits
the fuel inducer to operate with a low inlet NPSH without cavitation. The
fuel inducer is capable of operating with an NPSH as low as 60 feet, ove.
a hydrogen inlet temperature range, from 36'R to 45*R This inducer is
designed for a suction specific speed of 48,400 rpm GPMI/ 2 /ft3/4 and a
maximum pressure rise of 90 psid. The fuel low-speed inducer consists
of bearings, shaft and thrust piston, turbine, and housings and is shown
in figure 9. The oxidizer low-speed inducer is a single shaft axial flow
unit with high suction specific speed. It is driven by a variable-
admission, single-stage, radial-inflow, hydraulic turbine. The turbine
is driven by fluid supplied from the discharge of the main oxidizer turbo-
pump. The oxidizer inducer is of helical design with three blades, and
is attached to the drive shaft and turbine assembly as shown in figure 10.
The shaft axial thrust imbalance is absorbed by a single acting thrust
balance piston. The oxidizer induce- was designed to operate at a mini-
mum NPSH of 16 feet over an oxygen inlet temperature range from 162R..
to 180*R with a suction specific speed of 44,000 rpm GPMl/2/ft 3 / 4 and a
maximum pressire rise of 197 psid. Both inducers are designed for 100
reuses and a 1.0-hour life between overhaul.

1. FUEL TURBOPUMP

(C) The fuel turbopump supplies liquid hydrogen to the primary nozzle,
the two-position nozzle and to the preburner injector at sufficient

pressure and flowrates for engine operation from 20% to 100% maximum
thrust and at mixture ratios from 5.0 to 7.0. The overall goal of the
fuel turbo~ump subtask is to demonstrate an operational capability for
use in the demonstrator engine program. The demonstrator engine requires
the fuel t'irbopurnt to deliver liquid hydrogen at a flowrate of 91.3 lb/sec
at a pressure of 5654 psia at its design point of 100% thrust and a mix-
t ure ratio of 5. The design of the fuel turbopump is shown in figure 11.
The two-stage turbine delivers approximately 49,900 horsepower to the

pump and operates at a maximum inlet temperature of 2325*R at 100%
thrust and a mixture ratio of 7. The fuel pump must also demonstrate
satisfactory starting capability and stable operation over the engine
operating range of 20 to 100% thrust and mixture ratio range of 5 to 7.
Pump life is based on 10 hours between overhaul and 100 reuses. Major

components of the fuel turbopump are the pump, turbine, rotor assembly,
and housings. The pump section includes the inducer, two bearings and
mount systems, two impellers, and the thrust balance system. The high-
speed inducer has three equally spaced helical blades. The roller
bearings are 55 x 96.5 mm and are hydrogen cooled. The two pump
impellers have 24 equally spaced, curved blades divided into increments
of 6 long blades, 6 medium length splitter blades, and 12 short

14
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splitter blades. The thrust balance system, designed to compensate for
any net axial imbalance during operation, provides a force of 50,000
pounds using a 2100 psia pressure difference. The thrust balance system
consists of the thrust piston, the thrust piston housing, and the rear -

bearing housing. The two-stage turbine is cantilevered from the rear
bearing assembly and consists of two turbine stages, inlet ducting, a
support structure, and inlet and exit ducting. The pump housings consist
of the inducer housing, the main housing, the thrust piston housing,
and the rear bearing housing. Inconel 600 (AMS 5665) is used for the
inducer housing and Inconel 718 (AMS 5663) is used for :he other housings.

J. OXIDIZER TURBOPUMP

(C) The oxidizer turbopump supplies liquid oxygen to the preburner
injector and main burner injector at sufficient pressure and flowrates
tor engine operation from 20 to 100% of maximum thrust and at a mixture
ratio range from 5 to 7. The overall goal of the oxidizer turbopump,
subtask is to demonstrate performance and operational capability for use
in the demonstrator engine program. The demonstrator engine requires the
oxidizer turbopump to deliver liquid oxygen at a flowrate of 481 lb/se-
at a pressure of 4800 psia at 100% thrust and mixture ratio of 7. Th: !
uesign of the oxidizer turbopump assembly is shown in figure 12. The
oxidizer turbopump is a single-shaft unit with a single-stage shrouded
centrifugal impeller driven by a two-stage, pressure-compounded turbine.
The rotor shaft is supported by two antifriction 55 x 110 mm ball bearings.
The forward bearing is located between the impeller and the thrust
balance assembly, and the rear bearing is located in front of the
turbine and separated from the turbine by a low leakage labyrinth seal.
The rear bearing is cooled by liquid hydrogen and the front bearing
is cooled by liquid oxygen. The bearings are separated by a low-leakage
seal package that vents coolant leakage overboard. The seal package
consists of one lift-off seal and five labyrinth seals. The two-stage
turbine delivers a maximum of 18,000 horsepower to the pump and operates
at a maximum inlet temperature of 2325*R at 100% and a mixture ratio of
7.0. The two-stage turbine consists of the turbine inlet duct, the two
turbine stages, and the exit duct. Life is based on 10-hours time between
overhaul and 100 reuses. The oxidizer turbopump consists of a pump,
turbine, and housings. The pump section consists of the inducer im-
peller, bearings and mount system, thrust balance system, and the seals.
The high speed inducer consists of three equally spaced helical blades
having a constant tip diameter. The single stage impeller has 12
equally spaced, curved blades that are divided into increments of three
full blades, three long splitter blades, and six short splitter blades.
The impeller is completely shrouded and is fabricated from Inconel 718
(AMS 5563). The thrust balance system has a capability of 45,800 pounds
at 100% thrust and a mixture ratio of 5. The housings consists of an
inlet housing, center housing, and rear housing.
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(U) Figure 12. Oxidizer Turbopump Assembly

K. CONTROL SYSTEM

(U) A closed loop control system is required to ensure safe, precise,
and responsive performance of the engine throughout its operating range.
The planned system will accept vehicle or "man-in-the-loop" command
signals at any rate or sequence, and provide rapid response within the
functional and structural limits of the engine. The system will be
stable at any setting and will respond smoothly to command.

(U) Four discrete electric current signals from the vehicle will
accomplish engine starting, shutdown, and modulation of thrust and
mixture ratio. The control signals may originate either in the vehicle
guidance control or a pilot's command console in a manned vehicle.

---- Response of the engine to these signals will be governed by an electronic
Engine Command Unit (ECU). The demonstrator engine ECU will be a solid-
state electronic component incorporating all flight engine control
logic. The control valves, actuators, igniters, and plumbing will be light-
weight, flight-type parts contained within the engine envelope. The closed
loop control system will use flowmeters in both propellant lines to generate
signals proportional to actual thrust and mixture ratio. These flowmeter
signals will be compared to the vehicle input signals in the ECU and
will automatically correct any difference between actual and desired
values by modulating the engine propellant valves. An analysis of the
XLR129-P-1 rocket engine cycle has established the following four control
points are required for satisfactory steady-state operation: (1) pre-
burner oxidizer valve, (2) preburner fuel valve (3) main-chamber oxidizer
valve, and (4) uxidizer low-speed inducer, variable turbine, actuator.
Several on-off sequenced valves are also used in the control system as

4 follows: (1) nozzle-skirt coolant valve, (2) propellant vent valves, and
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(3) helium system valves. The control system consists of a basic control
computer that includes scheduled valve and oxidizer low-speed inducer
turbine areas, with limited authority trim based on measured engine
parameters. Various engine operating limits will be protected by override
authority. Control capability protecting the engine is critical to a man-
rated system. Within the demonstrator engine operating envelope, the
propellant schedule in the control will prohibit operation beyond com-
ponent limits. The principal control valves and subsystems have been
designed, and are as follows: (1) preburner oxidizer valve, (2) preburner
fuel valve, (3) main-chamber oxidizer valve, (4) two-poasition nozzle
coolant supply system (5) propellant vent valves, and (6) helium supply
system.
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SECTION III

ENGINE SYSTEM DESCRIPTION AND PERFORMANCE

A. DESCRIPTION

W(U) The staged-combustion, high-pressure demonstrator engine with a two-
i V position bell-nozzle is a 250,000-lb thrust (class), throttleable, high-

performance propulsion system. The operating envelope of thrust and
mixture ratio is shown in figure 13 and engine characteristics are pro-
vided in table 1. Nozzle interchangeability and the two-position nozzle
concept permit operation of the same engine system with optimum nozzle
area ratios for improving the performance of the lower or upper stages.
This interchangeability is achieved by using the same turbomachinery
power package and attaching the desired nozzle skirt for the various
application requirements. A cutaway view of the engine is presented in
figure 14. A propellant flow schematic -.llustrating the principal flow-
paths is presented in figure 15.

SIq .p-TLfbt. Tnuro-i .t)dL*C Tom .rap Limit

so

40-

20

rn-

. S 6 7 1
,~tItmr U210... .. _•

DFC 70704
(U) Figure 13. Operating Range for Demonstrator

I-- Engine
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b.
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(U) Figure 15. Demonstrator Engine Propellant Flow
Schematic

(U) Hydrogen and oxygen enter at the engine-driven low-speed inducers.
/The low-speed inducers minimize vehicle tank pressure requGremnts while

allo(ing high-speed emin propellant pumps to obtain high turbopump effi-

ciercies. The fuel low-speed inducer is a single shaft unit with a high
specific speed, axial-flow inducer driven by a partial-admission, single-
stage, hydrogen turbine. The oxidizer low-speed inducer is also a single -

shaft unit with a high specific speed, axial-flow inducer driven by a
variable admission radial inflow single-stage liquid oxygen turbine.

(U) The main fuel turbopump is a single shaft unit with two back-to-back
centrifugal pump stages driven by a two-stage, pressure-compounded tur-
bine. A double-acting thrust balance piston is provided between the
pump and turbine.

(U) The oxidizer turbopump is a single shaft unit with a single, centrif-
ugal pump stage driven by a two-stage, pressure compounded turbine. A
single-acting thrust balance piston is provided between the pump and
turbine.

(U) The preburner injector consists of dual-orifice tangential-swirler
oxidizer injection elements with concentric fixed-area fuel injection.

A translating sleeve valve is incorporated at the rear of the injector
assembly to vary the total oxidizer flow rate to adjust engine power
level and to adjust the relative flow of the primary ant secondary ele-
merts. The preburner combustion chamber is an integral part of the
transition case, which contains the turbine drive 3as ducts and a cooled
outershell. The main turbopumps are mounted to the transition case with
a plug-in arrangement of the turbines to provide maintainability.

(C) The main burner injector consists of a tangential-swirler oxidizer
injection eiements arranged in radial spraybars. The fuel side directs
fuel-rich gas flow (preburner combustion products after expansion through
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the turbine) through slots in a porous faceplate. The combustion chamber
wall is composed of a hydrogen-cooled liner extending from the injector
face to an area ratio of 5.3. The liner is composed of porous plates
providing transpiration cooling.

(U) The nozzle, which attaches at the end of the transpiration cooled
section, is composed of two fixed regeneratively cooled sections and a
retractable, low-pressure, dump-cooled section.

(U) The main fuel flow is pumped to system operating pressure levels by
the main fuel pump and is ducted to cool the regeneratively cooled sec-
tions of the nozzle. The forward section is cooled with the majority of
the fuel flow from the pump in a single pass heat exchanger. This flow
exits from the nozzle and is ducted to the preburner. The regeneratively
cooled rear section of the fixed nozzle is cooled with the remainder of
the fuel flow in a two-pass heat exchanger. This flow is subsequently
used as the working fluid to power the fuel low-speed inducer drive
turbine and is 0ben used to cool the porous main chamber walls.

(U) A small amount of fuel is ducted from the fuel pump interstage to
cool the retractable nozzle skirt. This fuel is heated to high tempera-
ture in the skirt and expelled overboard through small nozzles at the
ends of the coolant passages. A valve is provided to shut off the flow
when the secondary nozzle is retracted.

(U) After being pumped to system operating pressure, the oxidizer is
divided between the preburner and the main chamber. The smaller portion
of the flow is supplied to the preburner and is burned with the fuel.
The resulting combustion products provide the working fluid for the main
turbines, which are arranged in parallel. The turbine exhaust gases are
collected and directed to the main burner injector.

(U) The main burner oxidizer flow provides the oxidizer low-speed inducer
turbine working fluid and uses the available pressure drop between the
main oxidizer pump discharge pressure and the main chamber pressure for
the turbine power. The oxidizer flow is then injected into the main
burner chamber and is mixed and burned with the fuel-rich turbine exhaust
gases. The resulting combustion gas is then expanded through the bell-
nozzle.

(U) The primary engine control valves are located in the liquid oxygen
supply lines to the preburner and the main chamber and in the liquid
hydrogen supply line to the preburner.

B. OPERATING CHARACTERISTICS

1. Staady-State Operating Parameters

(C) The component and engine system steady-state operating parameters
are given in table II, for mixture ratios of 5, 6, and 7 at 100%, 75,
50 and 20% thrust. (These operating parameters result from an iterative
optimization process as described in paragraph G.)
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2. Start. Shutdown. and Throttle Trasients

(U) Estimated start, shutdown, and throttle teansient data are presented
in figure 16.

w

rht

OPC 757M
(V) Figure 16. Demonstrator Engine Estimated Start, Shut-

down, and Throttle Transient Data

C. LAYOUT AND SCHEMATIC

(U) The engine layout is illustrated in figure 17. The complete engine

system schematic shown in figure 18 illustrates the helium supply system
and the primary propellant flow paths and the interrelationship of all
of the major components.

D. WEIGHT

-* (U) The estimated demonstrator engine weight based on lightweight rather

than flightweight component designs is presented in table III. The

targeted demonstrator engine weight is 3380 pounds. Component weights

are discussed in more detail in the component sections of this report.

E. INTERFACES

(U) The ranges of temperature, pressure, and NNPSH conditions required at
the inlet to the fuel and oxidizer low-speed inducers are snown in

figures 19 and 20.

31/32 (blank)
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(U) Figure 17. Demonstrator Engine Layout
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(U) Table 1l1. Demonstrator Engine Estimated Weight

Estimated Targeted
Item Weight, lb Weight, lb

Preburner and Hardware 92 90
Transition Case and Gimbal 324 370
Main Burner Injector and Hlardware 99 115
Main Burner Chamber 410 425
Nozzle and Actuation 652 640
Fuel Turbopump 554 480
Oxidizer Turbopump 383 335
Low-Speed Inducers 348 235
Controls 230 305
Plumbing 290 310
Miscellaneous 50 75

Total 3432 3380

/"
- 0

42
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(U) Figure 19. Fuel Inlet Operating Region
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(U) Figure 10. Oxidizer Inlet Operating Region

(U) A study selected the inlet propellant temperatures used for the

design cycle analysis of the engine. Engine power requirements were-•
found to vary significantly with engine inlet temperature. The required :

turbine inlet temperature varied approximately 96°R, and the fuel pump

speed varied approximately 3000 rpm over the full range of inlet tem-

perature specified for the demonstrator engine.

,)The highest proposed inlet conditions were selected for component

design to assure the engine power requirements can be met under the
most severe operating conditions.

(C) The relationship required between fuel temperature and oxidizer
temperature, so that the maximum turbine inlet temperature (23250R) will

not be exceeded at 1007, thrust is shown on figure 21.
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I IS II 1 4l•r tr . 2

OFC 70473

(U) Figure 21. Propellant Temperature Limits for Fuel Trim
Capability

(U) The engine/vehicle main structural interface is a ring flange on the
thrust ball cone with a 6.0-in. diameter bolt circle. Eighteen equally
spaced 0.2493-in. diameter holes are provided for bolt attachment of the
engine to the vehicle. (Refer to Section IV, Paragraph B for a descrip-
tion of the gimbal thrust ball.)

(U) Gimbal acutators for control of pitch and yaw rate are attached by
0.5625-in. thread, UNF-3A, 12-point shoulder bolts to two gimbal actuator
brackets on the main burner chamber pressure shell.

F. DESIGN CRITERIA

(U) Presented in Appendix I are the structural design criteria and limits
for the major components of the XLR129-P-1 rocket engine.

G. SYSTEMS ANALYSIS

1. Genera4

(U) System analyses of the demonstrator engine are being conducted
throughout the program to define component design requirements, to
estimate the capabilities of the integrated engine system, and to
incorporate the results of component and engine tests.

(U) An initial analytical study was conducted to define those component
design criteria that ::ieet the design requirements of engine performance
(as shown in table II)within the integrated engine system. These design
data were derived by steady-steite and transient analyses over the com-
plete engine operating range using digital computer mathematical models.

40
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The steady-state analysis consists of studies that establish a cycle
balance between design limitations and component performance. The
transient studies define the engine design requirements based on dynamic
requirements and operating sequences for engine start, throttling, pro-
pellant utilization, and shutdown.

(U) As component and engine test data became available, the steady-state
and transient analyses have been updated as required to provide the
design data necessary to improve the component and module designs.

(U) The system design resulted from an iterative optimization process be-
tween mechanical and anayltical studies, and component and engine test
data. Using a digital computer, a cycle balance program defines com-
ponerit design point data and determines engine performance for the
design and off-design point operating conditions. These design data are
used in the completion of design layouts. Specific component limita-
tions defined in the process of designing the individual components are
again input into the cycle balance and the iteration is continued until
an optimum design is established.

2. Initial System Analysis

a. Analysis Method

(U) A balance was established between component thermodynamic perform-
ance, mechanical design requirements, and engine operating requirements.
This balance was established by using an optimization procedure in
which component geometry and performance are varied to maximize mechani-
cal design margin while meeting the engine operational goals. Table IV
summarizes the various inputs, engineering considerations, and results
of this process.

b. Analysis Criteria

(U) The engine characteristics presented in table I were used for the
systems analysis of the demonstrator engine. They represent the tar-
gets toward which the demonstrator engine program are being directed.
Technology limits used for the system analysis were set at the state-
of-the-art level per data obtained in subscale and full-scale combustion
testing under Air Force contract AF04(611)-11401 and turbopump testing
under NASA contracts NAS8-20540 and NAS8-11714. Because an accurate
estimate of the anticipated component performance was known prior to the
design analysis, the engine was designed with confidence that the struc-
tural margins and performance levels will be sufficient to allow maxi-
mum flexibility of engine operation.

c. Steady-State C.,cle Optimization

(U) The cycle balance program used for steady-state cycle optimization
is configured to afford flexibility in the integration of component
recuirements over the thrust and mixture ratio ranges. Features include:
(1) a means of selecting the optimum component design points, (2) a pro-
cedure for optimizing the turbine area match for required engine opera-
ting range, and (3) a method of evaluating component off-design per-
formance effects on overall cycle performance.
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(U) Table IV. Cycle Definition Procedure

Component Inputs or Engineering Results
Specifications Considerations

Combustion Nominal vacuum Component per- Structural Dimen-
Chamber thrust formmnce avail- sions - chamber size,
and ble tube diameters, in-
Nozzles Chamber pressure Jector areas, etc.

(target value) Mechanical design
limits

Limiting engine Weight tradeoffs Nozzle expansion
dimersions ratio

Minimum specific Cooling require- Operating Perfor-
impulse efficiency ments mance - thrust,

specific impulse,
Nominal mixture Component inter- propellant flow
ratio gration rates, cooling

flows, etc.
Durability
requirements Operating limits

Environmental Weight
conditions

Turbopump Pressure require- Component perfor- Structural Dimen-
Power ments mance available sions - pump and
Package turbine diameters,

Propellant flow Mechanical design injector areas,
rates limits bearing sizes, etc.

Thrust and mix- Weight tradeoffs Operating Perfor-
ture ratio range mance - preburner

Design and off- temperature, pump
Environmental and design charac- pressures, speeds,
interface teristics of efficiencies,
conditions engine cycle coolant flow rates,

NPSH, etc.
Component
integration Operating limits

Weight
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(U) Table IV. Cycle Definition Procedure (Concluded)

Component Inputs or Engineering Results
Specifications Considerations

Control Engine operating Design and off- Control point
System modes design character- locations

istics of engine
Operating Limits cycle Structural

dimens tons
Engine thrust and System pressure
mixture ratio drops Valve functions
accuracy

Mechanical design Valve sequences
Environmental and limits - area
interface condi- turndown, valve Valve area schedules
tions accuracy, response,

etc. Weight

(.U) The initial step of the cycle balance program defines the chamber
and nozzle geometry necessary to provide the required thrust at the
nominal mixture ratio within the allowable de-sign limitations. The
ain chamber combustion and nozzle efficiencies were maintained at a

level consistent with the goals of the demonstrator engine program.
The chamber pressure was fixed at the maximum level consistent with
turbopump design limitations.

(C) The chamber geometry is established to provide 244,000-lb thrust
for a booster stage vehicle application with an area ratio of 75:1.

(U) The nozzle coolant flow rates and passage sizes were varied until a
balance was achieved between coolant pressure loss, nozzle weight, and
coolant flow rate. The coolant pressure loss in the regenerative
nozzles is important because it adds directly to fuel pump pressure.
The nozzle skirt and transpiration coolant flow rates are important
because these flows are not available for providing turbopump power.
These flows also bypass the main injector, which increases the chamber
mixture ratio and tends to decrease the overall specific impulse effi-
ciency.

(U) The engine flow rates and pressures defined in the nozzle/chamber
design calculations provide the basic data used to design the turbopump
power package.

(U) The design approach taken in the cycle studies to obtain the required
mixture ratio operating range was to use the extreme of the mixture ratio

.range as the power package design points.

(U) The fuel pressure requirement controls the power balance at the low-
est mixture ratio, and the oxidizer pressure requirement controls the
balance at the highest mixture ratio. In addition, the minimum avail-
able turbine power occurs at the highest mixture ratio where the fuel
flow is at a minimum. At the extremes in mixture ratio, where one pump
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controls the power match, the other pump is in an "overspeed" condition.
Overspeed means that the pressure provided exceeds the pressure required
to satisfy the flow conditions.

(C) A reduction in efficiency results when a centrifugal pump is operated
at flow rates and rotor speeds other than the pump design point. By
selecting the design point of the main pumps at their respective maxi-
mum flow conditions, two advantages are obtained. First, the best effi-
ciency point of the pump coincides with the engine operating point where
the respective pump is controlling the power balance; second, the re-
duced efficiency at the low flow condition (i.e., the other extreme
mixture ratio point) tends to minimize overspeed and to minimize the
control system corrections required. Thus, the fuel pump is designed
for a mixture ratio of 5.0 and rated thrust, and the oxidizer pump is
designed for a mixture ratio of 7.0 and rated thrust. Use of this cycle
optimization technique results in appreciably reduced pump pressure and
speed requirements.

(U) The basic turbopump design variables other than efficiency, namely
turbine areas, pump impeller diameters, speed, and turbine inlet tem-
perature, are optimized through an iterative procedure. Turbine areas
and pump diameters are varied to meet the cycle pressure requirements
within rotor speed and turbine temperature limitations.

(C) The maximum turbine inlet temperature occurs at the maximum mix-
ture ratio point, where the preburner fuel flow is at a minimum. The
maximum allowable temperature is approximately 2325"R and is determined
by the turbine stresses, which vary as functions of the turbine diameter,
speed, and fluid bending forces.

(U) Variation in the total turbine area (fuel turbine area plus the
oxidizer turbine area) affects the total power through pressure ratio,
whereas the ratio of turbine areas (fuel turbine area/oxidizer turbine
area) affects the division of turbine power. As these areas are changed,
the pump head requirements vary, and the pump impeller diameters are
then sized to provide the required pump pressures within allowable
design limitations.

(U) At a particular value of total turbine area, the ratio of oxidizer
turbine area to fuel turbine area is established to balance the turbo-
pump power at the maximum allowable turbine inlet temperature (high
mixture ratio). With this area ratio fixed, the cycle is rebalanced at
the low mixture ratio extreme. Because of the turbopump power trends,
the fuel and oxidizer turbopump speeds increase at the low mixture ratio.
If the speeds are greater than allowable, the pump diameters are changed
to hold the speed within the mechanical limitations defined by critical
speed, turbine wheel speed, and bearing DN.

(U) Because a modification to either the fuel or oxidizer pump at low
mixture ratio will affect its operating requirements at high mixture
ratio, the turbine area ratio at high mixture ratio may need to be
changed. This process (changing components at one mixture ratio and
checking the effects at the other mixture ratio) was continued until an
optimized cycle balance was obtained.
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(U) In balancing the engine cycle, the components that maximized cham-
ber pressures within the restraints of pump speed and pressure and tur-
bine maximum temperature were selected.

(•) Combustion performance and injector characteristics are considered
in conjunction with control pressure loss scheduling. In the preburner
and nain burner injector designs, the major performance considerations
are ttic fluid velocities, the momentum exchange between the fuel and
oxidizer, and the injector pressure potentials for combustion stability.
In the control system designs, the major considerations are pressure
drop for flow control potential and valve turndown ratio. Off-design
performance characteristics are used to obtain basic injector and con-
trol design data to ensure that sufficient pressure drop to satisfy both
the stability and control system pressure requirements is provided.
At each balanced operating point the required injector and control pres-
sure drop is maintained or exceeded.

i\ (U) Design characteristics of the low-speed inducers were also deter-
mined within the cycle balancing effort. The inducer design discharge
pressure must satisfy the main turbopump NPSH requirements and the
estimated line losses between the low-speed inducers and pump.

(U) The low-speed inducer diameter and drive turbine speed were selected
to provide the necessary inducer discharge pressure and turbine effi-
ciency while remaining consistent with the available low-speed inducer
inlet NPSH and inducer suction characteristics. The turbine areas were
sized to provide sufficient energy to drive the inducers without in-
creasing the maximum pressure of the main pumps.

d. Transient Analysis

(U) The transient characteristics of the XLR129-P-l engine were investi-
gated to identify any component design limits and to define the optimum
control sequences to provide rapid, safe, and repeatable start throttling
and shutdown transients. Variations in environmental conditions, such
as inlet and ambient temperatures and pressures, were considered.
Evaluation of the effects of engine component performance and control
system on the system transients are an integral part of the design
process.

(U) The basis for the control system used in the System Analysis was
a detailed controls study performed under Contract NAS8-11427. This
study evaluated several control systems and 17 control points for an
advanced high pressure rocket engine system using a preburner cycle.

(1) Throttle Transient Analysis

(U) Transient analyses of the engine system within the extremes of main
stage thrust and mixture ratio define the engine and control system
dynamics, and define engine transient response and component protection
required during rapid transients.
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(C) Engine throttle transients were simulated using representative con-
trol systems that use engine parauwters as input and/or feed back to
the control areas. The preburner oxidizer valve was selected to provide
closed-loop thrust control by using oxidizer and fuel flowmeter flows
(summed) as a thrust indication. Tie ratio of the flowmeter flows was
fed back to the main chamber oxidizer valve to provide closed-loop mix-
ture ratio control. Accelerations and decelerations between idle and
rated thrust in 2 seconds were simulated at engine mixture ratios oi
5 and 7. Three second mixture ratio excurs'ons between 5 and 7 were
simulated at 100 thrust. Throttling transient analysis revealed no
limitations that would require hardware or control mode changes from
that established during steady-state analysis.

(2) Start and Shutdown Transient Analysis

(U) Similar mathematical models were used to simulate the start, throt-
tling and shutdown modes of operation. Additional calculations in the
start and shutdown simulations include: (1) the propellant filling
processes, (2) fluid properties for phase transitions from gas to two-
phase to liquid flow, (3) preburner and main chamber ignition, and (4)
low-speed performance of the main turbopumps and low-speed inducers.
Similar models have been used extensively during Phase I, Contract
AFO4(611)-11401, Module Design task and also in conjunction with the
preburner and staged Lombustion test programs. A summary of the con-
clusions of these studies is presented below:

(a) Start Transient

(C) 1. The engine can be safely started to 2MA thrust in approx-
imately 2 seconds using a time-sequenced control method.

(U) 2. The orifice restriction in the primary flow path of the pre-
burner oxidizer valve must be made smaller than that estab-
lished during steady-state cycle analysis to reduce the
preburner temperature spike when the primary cavity fills.

(U) 3. The use of helium purges in the secondarv cavity of the pre-
burner oxidizer injector and the main oxidizer injector is
recimrended to prevent back flow of the combustion product pre-
dicted to occur during the start transients.

(b) Shutdown Transient

(C) 1. A shutdown analysis showed that the engine can be shut down
safely from 20! thrust at all mixture ratios by using a single
time-based propellant valve sequence that schedules all shutoff
valves to their fully closed position in a maximum of 1.5 sec.

(U) 2. The valve sequence can be modified to adjust the rate of pre-
burner temperature decay during shutdown, if necessary for
turbine stress and cycle life considerations.

(U) 3. The shutdown transient analysis revealed no limitations that
would require hardware or control mode changes from that
established during steady-state cycle analysis.
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a. Design Point Trade Studies

(U) Trade studies were made to establish the sensitivity of engine
characteristics to component performance levels to identify the critical
component characteristics and minimize any undesirable effects. The
trade factors presented in table V were determined by varying each
parameter separately and rematching engine components to provide maximum
chamber pressure within component limitations and cycle ground rules.
The change in preburner temperature required to maintain a constant
chamber pressure with variations in component performance was also cal-
culated by using the trade factor for chamber pressure and turbine
temperature defined in table V.

(U) The turbine area changes required to reoptimize (rematch) the cycle
for full mixture ratio range at the indicated changes in chamber pres-
sure were also established. For example, if main fuel turbine efficiency
were increased 1 point, chamber pressure could he increased 12.6 psia
over the full mixture ratio range provided the fuel turbine area was
reduced by 0.25% and the main oxidizer turbine area was increased by
0.87%. The trade factors presented in table V may be assumed to be
linear for small component variations.

b. Maximum Oxidizer Pump Discharge Pressure

(C) An analytical study was made to determine the optimum method of
obtaining a maximum chamber pressure. Engine design cycles were estab-
lished with components matched for maximum allowable oxidizer pump dis-
charge pressures of 6500, 7000, and 7250 psia.

(C) The following major factors were noted:

1. The maximum excess thrust capability is available for an engine
designed for a peak oxidizer pump discharge pressure of 7050
psia.

2. The maximum design chamber pressure Increases with increasing
maximum oxidizer pump discharge pressure.

3. As the peak oxidizer pump discharge pressure is decreased, the
assumed fuel pump speed limit of 48,000 rpm is approached at
100l, r - 7.

4. With increasing oxidizer pump discharge pressure, the assumed
preburner temperature limit of 2325*R is approached at 100%,
r - 5.

5. Overall specific impulse at a mixture ratio of 5 decreases with
increasing maximum oxidizer pump discharge pressure as a result
of increased transpiration cooling flow.
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(C) Consideration of all the above factors indicates that an engine
designed for a maximum oxidizer pump discharge pressure of 7050 psia
would provide the optimum design. Although a slight loss in specific
impulse would result at a mixture ratio of 5, no significant loss will
be encountered at a mixture ratio of 6 and above, and the chamber pres-
sure level attainable would be consistent with present design goals.
An engine designed for higher oxidizer pump pressures could operate at
slightly higher chamber pressure, but the specific impulse at mixture
ratios of both 5 and 6 and excess thrust capability would be reduced.

c. Transistion Case Coolant Flow Source

(U) A design analysis of the transition case cooling passage indicated
that structural problems may exist during the shutdown transient if the
cooling is obtained from the preburner fuel valve discharge. This cycle
analysis confirmed the acceptability of the alternative supply source
located at the transpiration supply heat exchanger discharge.

(C) For the analysis, the transpiration supply heat exchanger configura-
tion was maintained and its cooling flow rate was increased by the level
of transition case cooling flow. The increased cooling flow at 100%
thrust, mixture ratio of 7, did the following: (1) reduced the trans-
spiration wafer inlet temperature 63*R, (2) reduced required wafer
cooling flow 0.25 lb/sec, (3) increased specific impulse 0.3 second,
and (4) decreased required preburn temperature 18.2"R.

(U) Rerouting of the flow reduced the maximum available fuel low-speed
inducer turbine power 16% because of the increased turbine inlet line
loss (higher flow) and decreased turbine temperature.

d. Two-Position Nozzle Flow Source

(U) This study investigated three engine locations for supplying the
tw. -position nozzle coolant flow with and without a control valve. The
locations investigated were: (1) the fuel pump interstage, (2) the
fuel low-speed inducer ischarge, and (3) the fuel preburner supply.
For operation with the control valve in the system, the minimum coolant
flow was scheduled into the nozzle. For operations without a control
valve, an orifice was sized to provide the minimum coolant requirements
at a critical engine operating point and allowed overcooling at all
other operating conditions.

(U) The fuel pump Interstage was chosen to supply cooling flow for the
two-position nozzle because (1) acceptable nozzle cooling was provided
without requiring a control valve, (2) the source was insensitive to
variations in engine inlet conditions (the LS1 tapoff was very sensitive "'

to them), and (3) the slight penalty in chamber pressure and overall
impulse efficiency caused by the overcooling characteristic inherent in
the orifice configuration was acceptable.

(U) The engine characteristics with the three candidate locations are
presented in figures 22 through 27.
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(U) Figure 27. Effect of Fuel Preburner Suvplv Tap-Off
Location on Engine Impulse Efficiency

H. PERFORMANCE DATA

(C) The booster configuration operating at sea level, utilized the noz-

zle in the retracted position resulting in an expansion ratio of 35,
which improves the thrust and specific impulse. At an altitude of
20,000 ft the two-position nozzle is translated to the extended position
to provide an area ratio of 75 for improved altitude engine specific

impulse. Use of the two-position nozzle provides nearly optimum per-
formance for each operating regime. Altitude performance, i.e., thrust
and specific impulse, for the honster configuration is presented in
figure 2.. The variation in sea level specific impulse with mixture
ratio is shown in figure 29. The vacuum specific impulse vnriation
with thrust and mixture ratio is given in figure 30.
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