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Abstract

This paper describes experiences with modeling the liquid hydrogen subsystem of the space
shuttle. The Symbolic Model Verifier tool and the Software Cost Reduction tool set were
used to model and specify the behavior of the system. The tools were then used to check for
errors in the models. Modeling a problem from several different perspectives offers the
chance to uncover discrepancies among different models and to understand the problem
space enough to ask important questions about the behavior of the system.

Each tool presented different issues in modeling the problem. Both models and a breakdown
of the time spent during this study are included as appendices.



viii CMU/SEI-2000-TN-002



CMU/SEI-2000-TN-002 1

1 Introduction

The liquid hydrogen (LH2) subsystem is a series of pipes and valves that controls the flow of
liquid hydrogen into and out of the external tank of the space shuttle. The behavior of the
system from start to lift-off was modeled as a finite state machine by an intern at NASA. This
state machine model was translated into SMV (Symbolic Model Verifier) and SCR (Software
Cost Reduction) notations.

There are two types of specifications: operational and property based. Operational
specifications represent the system as a state machine. These types of specifications are less
likely to omit required behavior [Heitmeyer 98b]. The modeling language used in the SMV
tool is an example of an operational model. Property-based specifications express system
properties as logical formulas. These specifications are concise and abstract, thereby
minimizing implementation bias [Heitmeyer 98b]. The specification language used in the
SCR tool set is an example of a property-based specification language.

The SMV tool is an automated model checker developed at Carnegie Mellon University. It
uses ordered binary decision diagrams to explore and check the state space of models. The
SCR language is based on the tabular function notations of Parnas and is a requirements-
specification language; its automated tool set checks for consistency and completeness.

In this report, the experiences of modeling the LH2 subsystem with both tools are discussed.
The issues that were encountered during these experiences are also described. The author’s
background in modeling includes a four month survey of several formal mathematical models
and two months of learning SMV notation and its checker. The author was new to the SCR
tool set at the beginning of this project, however she had been introduced briefly to function
tables.
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2 Liquid Hydrogen Subsystem

The liquid hydrogen (LH2) subsystem is responsible for filling the space shuttle’s external
tank with liquid hydrogen [Wight 92]. It is also responsible for maintaining the level of liquid
hydrogen in the tank prior to launch. The subsystem is made up of the launchpad liquid
hydrogen storage tank, the space shuttle’s external tank, and transfer lines and valves.

The launchpad LH2 storage tank holds the liquid hydrogen until it is time to fill the external
tank. The transfer lines carry the LH2 from the storage tank to the external tank. Valves
control the flow of LH2 in the various transfer lines. The transfer lines are also equipped with
gauges that monitor temperature and pressure.

A diagram of the LH2 subsystem state machine is shown in Figure 1 below.
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Figure 1: LH2 State Machine Diagram

Several issues during the modeling were encountered. One issue that arose was the author’s
lack of domain knowledge which prohibited her from interpreting the charts, diagrams, and
plots that were included in the NASA intern’s report. Therefore, there was a lot of potentially
useful information in the report that could not be extracted and used in the models.

There was also a lack of information pertaining to the states of Revert, Stop Flow, and Drain
and their transitions. They were depicted in the state machine diagram, but their semantics
were not included in the NASA intern’s report. This resulted in modeling the system without
these states and transitions and reduced the amount of nondeterministic and potentially
interesting behavior of the models.
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3 The SMV Tool

The Symbolic Model Verifier (SMV) is a tool for checking finite state systems against
computational tree logic (CTL) claims, which are called “specs” [McMillan 92]. SMV uses a
symbolic model-checking algorithm, which is based on ordered binary decision diagrams
(OBDDs), to check the validity of the CTL specs. The model of the system is written in a
Pascal-like specification language. Clarke, et al., McMillan, and Srinivasan have written
papers that explain the theory behind the SMV tool and how to use the tool [Clarke 94,
McMillan 92, Srinivasan 98].

A few interesting points were discovered during the modeling of this system in the SMV tool.
Although the model is specified as a “program” and can be thought of as one, it does not
behave exactly as a program would. The SMV tool behaves as if the entire OBDD of the
model were computed and then verifies the specification. This allows you to “see the future.”
For example, you may assign a value to variable x, based on the future value of variable y.
Figure 2 shows a small example of this in the SMV language. This ability of the tool was
counter-intuitive until it became clear that the checking of the model is not exactly analogous
to the running of a program; it is actually performed by manipulating equations. In the end,
this feature of the SMV tool was not used in the model of the LH2 subsystem.

x: {one, two};

y: {four, five};

ASSIGN

init(x) := one;

init(y) := four;

next(x) :=

case

(next(y) = five): two;

1: x;

esac;

next(y) :=

case

y = four : five;

esac;

Figure 2: Using the Next Value of y to Determine the Value of x

Time and volume were modeled as their own state machines or modules so that they could
have nondeterministic behavior; their state machines could stay in any one state for a finite
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length of time and then move on to the next state. However, when a spec to check this
behavior was created, the SMV tool always generated a counterexample and the state
machine would stay in one state infinitely. To resolve this problem, fairness conditions for
each state had to be added. The FAIRNESS keyword in the SMV tool signifies that the
condition following it must hold infinitely often. In other words, in an infinite trace of the
state machine’s operation, there must never be a point at which the condition becomes false
and stays false forever. The FAIRNESS keyword prevents the checker from “stalling” in one
state forever.

Designating time as an integer variable with a large range (from 0 to 405 seconds) would
cause a state explosion in the model. To abstract the information in time, the author chose to
model it as having a finite number of enumerated states. Because only three times were
important to the behavior of the system (60 s, 165 s, 405 s), the states “initial,” “short,”
“medium,” and “long” were created. Volume was modeled similarly with four abstract states:
0%, 2%, 98%, and 100%, and had a similar nondeterministic behavior and fairness problem.
The volume module of the model is shown in Figure 3.
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MODULE volume(system-state)

VAR

state : {zero, two, ninety-eight, one-hundred};

ASSIGN

init(state) := zero;

next(state) :=

case

--Either stay in the same state or change states

--spontaneously based on state of system

(system-state = slow-fill) & (state = zero):

{zero, two};

(system-state = fast-fill) & (state = two):

{two, ninety-eight};

(system-state = topping-state) &

(state = ninety-eight):

{ninety-eight, one-hundred};

1 : state;

esac;

FAIRNESS

!(state = zero)

FAIRNESS

!(state = two)

FAIRNESS

!(state = ninety-eight)

Figure 3: Nondeterminism and Fairness in the Volume Module

The entire SMV model of the LH2 subsystem can be found in Appendix A.
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4 The SCR and Spin Tools

The Software Cost Reduction (SCR) notation is based on the tabular function notations of
Parnas [Heitmeyer 96]. It is not an operational modeling language; rather it is a requirements
specification language. The behavior of the system is thought of as a state machine or a mode
class. Each state is a mode, and transitions from mode to mode are through events. The SCR
tool set checks specifications for consistency. A consistent specification has proper syntax, no
type errors, no nondeterminism, and no missing cases. It must have all initial values either
defined or able to be derived from the tables, and all modes must be reachable from the initial
mode. Also, it should not contain circular definitions for variables [Heitmeyer 96]. In
addition, the specification should be disjoint and have full coverage [Easterbrook 96]. Being
disjoint means that no combination of conditions has conflicting actions specified for it. Full
coverage means that an action is specified for each combination of failure conditions
[Easterbrook 96].

The SCR method uses the notion of monitored and controlled variables. These categories
correspond to input and output variables. All variables are required to be classified as either
monitored or controlled. This explicit classification forced the author to look carefully at the
system and determine how it should be modeled and at what level of abstraction. For
example, one of the variables represented the volume of liquid hydrogen in the external tank.
This volume can be considered monitored because its value determines which system valves
to open and close. This volume can also be considered controlled because the system controls
the volume of hydrogen in the tank. Volume was chosen to be a monitored variable because
the level of abstraction was at the level of individual valves. The system was modeled as
directly controlling the valves, and not the volume.

The SCR specifications in the SCR tool set documentation are written in deeply nested
Backus-Naur form (BNF) notations and are confusing to read. To resolve this issue, the
author had to look at example specifications written by other members of the Software
Engineering Institute (SEI). Some of the BNFs were also rewritten by the author to remove
the nesting. For example, Figure 4 shows the steps the author took to create one event in the
event table for the cTopping variable, following the Syntax of Expressions table in the SCR
tool set documentation [Kirby 97]. (Note: in the figure below, �n signifies a transformation
from one BNF to another in n steps.)
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expression �1 o_event �1 a_event �1 simple_event �1 cond_event �1

event WHEN full_ifandonlyif �2

AT_TRUE LPAREN full_ifandonlyif close_expression WHEN

full_implication ifandonlyif �4

@T(full_ifandonlyif) WHEN full_implication ifandonlyif �9

@T(true) WHEN full_implication ifandonlyif �1

@T(true) WHEN o_cond implication ifandonlyif �3

@T(true) WHEN LPAREN full_ifandonlyif close_expression  ifandonlyif �8

@T(true) WHEN (relat_exp close_expression ifandonlyif �8

@T(true) WHEN (cChilldown = open)

Figure 4: Transformation of “expression” to “@T(true) WHEN (cChilldown = open)”

As you can see, the creation of one conditional event is very involved, especially for someone
who does not know the syntax of the tool.

Nondeterminism is excluded purposely in SCR specifications because many systems that
have nondeterministic behavior are underspecified. Because the SCR tool set checks for
incomplete specifications, it prohibits nondeterministic behavior. The external tank vent
valve in the LH2 subsystem is “unstable” in certain states of the system. This was easily
modeled as nondeterministic behavior in the SMV tool. However, in the SCR tool set, this
specification had to be left out and replaced with “stable” valve behavior (meaning the valve
was left in the position it was in prior to the unstable states).

The SCR tool set provides a visual way to look for variable dependencies. The dependency
graph screenshot shown in Figure 5 shows the connections between dependent variables. It
also shows unspecified variables and variables with circular dependencies. The SCR tool set
also provides textual warnings, but the graph is an easy way to scan for these possible errors.
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Figure 5: Screenshot of Dependency Graph for the LH2 Specification

The controlled variables have dependency arrows leading backwards through other controlled
variables and the terms to the monitored variables. Arrows from left to right are darker
because they may be part of a circular dependency.

The SCR tool set facilitates the verification of the specification against claims by using
Xspin, which is the graphical version of the modeling tool Spin, developed at Bell
Laboratories. The Spin tool models in a language called PROMELA (PROcess MEta
LAnguage). Like in the SMV tool, claims are written to describe specific behaviors of the
system and verified automatically by the tool. Unlike in the SMV tool, claims are written in
linear temporal logic (LTL) rather than CTL. Many expressions written in CTL can be
translated into LTL and vice versa. The Spin tool translates the PROMELA model into a C-
code prototype and runs it, thereby verifying the specs on the fly [Spin].

The author did not have to learn PROMELA, because the SCR tool set automatically
translates tables into PROMELA. Developing claims was simple, since similar specs had
already been developed in the SMV tool, and CTL can be converted to LTL easily. There
were some troubles running the tool and verifying the specs. The SCR tool set allows
variables to be of the type “real,” but the Spin tool does not. All of the “real” variables had to
be changed to integers. This change did not solve all of the problems in running the Spin tool.
Because the “integer” type variables had large ranges, the resulting state space was very
large. The computer used did not have enough memory to explore the entire model. To solve
this problem, the integer variables were replaced with enumerated ones. This is one of the
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abstraction methods discussed by Heitmeyer, et al. [Heitmeyer 98a]. Only then was the state
space small enough for the Spin tool to check thoroughly. As with the SMV tool, all claims
were valid.

The SCR specification of the LH2 subsystem can be found in Appendix B.
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5 Conclusions

The goal of this study was to document the experiences of modeling a system in different
languages and using different tools. There are several benefits to modeling in multiple
languages. On one hand, multiple models help in developing a greater understanding of the
problem space, eliciting questions about the model to be posed to domain experts, and
catching unexpected system failures and behaviors. On the other hand, there is a time and
effort cost in learning new tools and languages, and in keeping all the models up-to-date and
consistent with each other and with the system implementation.

By having more than one model, you gain a greater understanding of the problem space and
the behavior of the system. Easterbrook, et al., mention that it is not the end product of
modeling that is most important; the experience of modeling is [Easterbrook 96]. Heitmeyer,
et al., mention that by examining the problem from both operational and property-based
viewpoints, discrepancies in both specifications can be detected [Heitmeyer 98a]. “Carefully
designed redundancy in specifications can be useful” [Heitmeyer 98a]. However, time must
be spent keeping all of the models synchronized with each other and the system
implementation. If all of the models overlap in a large portion of the problem, making one
change in the system implementation can require updating all of the models. Carefully
designed redundancy may offer benefits; however, complete redundancy is wasteful and
unnecessary.

Building models elicits questions to be posed to domain experts. As the author modeled in the
SMV tool, there was not enough information about certain states and their transitions, such as
the “stop flow” state. This gap in the model helped to formulate important questions to be
asked of domain experts. The use of monitored and controlled variables in the SCR tool set
forced the author to critically examine the level of abstraction in the model.

It takes time and effort to learn a new tool and to learn the syntax of a new modeling
language. See Appendix C for a breakdown of the author’s time. A lot of effort (31%) was
spent in mentor meetings and group presentations. Seven percent of the effort was spent
modeling in the SMV tool. This low figure is attributable to the author’s familiarity with that
tool. Sixteen percent of the effort was spent learning and modeling in the SCR tool set
because of the author’s lack of familiarity with the tool and the language syntax.

Modeling tools are much more efficient than theorem-proving techniques at detecting errors
and providing counterexamples to claims because these tools search the state space
automatically and completely. When used early in the development cycle (before code has
been written and sometimes before requirements have been completed) modeling can catch
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unexpected system behavior or failures before their cost of repair increases as the cycle
continues [Heitmeyer 96].

Formal model checking is often compared to the more traditional method of verification,
theorem proving. Model checking is cheaper in time and effort than theorem proving
[Easterbrook 96]. Model checking is automated, can completely search a state space, and
does not require extensive training in logic and higher mathematics. The author’s background
includes high-school-level predicate logic, college-freshman-level first-order logic, and two
months in CTL. The counterexamples generated by these automated tools are also useful
artifacts because they can be used as “bug reports” and because the root causes of problems
can be found and corrected easily. For example, in Appendix A, the SMV model uses
specifications that prove true. They could be negated easily to produce a “witness” to the
correct system behavior [Clarke 94]. In the example shown in Figure 6, the spec
“AF(LH2.state = topping-state -> AF(vol-gauge.state = one-hundred))”
is negated to “EG (!(LH2.state = topping-state -> AF (vol-gauge.state =

one-hundred))).” The output is also shown.

-- specification EG (!(LH2.state = topping-state -> AF

vo... is false

-- as demonstrated by the following execution sequence

state 2.1:

LH2.state = chilldown-state

LH2.chilldown = closed

LH2.transfer-line = closed

LH2.transfer-line-vent = open

LH2.main-fill = closed

LH2.outboard-fill-drain = closed

LH2.external-tank-vent = closed

LH2.main-fill-redu = closed

LH2.auxiliary-fill = closed

LH2.inboard-fill-drain = open

LH2.topping = closed

LH2.high-point-bleed = closed

LH2.fill-disconnect = open

LH2.recirculation-disconnect = open

LH2.pre-valve = open

LH2.recirculation = closed

LH2.replenish = closed

vol-gauge.state = zero

timer.state = initial

press-gauge.state = initial

Figure 6: Output of a Negated Property to Create a Witness
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Although there are drawbacks to using multiple models, they are outweighed by the benefits:
automated verification and insight into the problem space. In modeling the LH2 subsystem,
no major problems were found. The experiences gained with the modeling tools can increase
developers’ software engineering knowledge and mature their engineering discipline.
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Appendix A: SMV Model and Specifications

MODULE system (volume, pressure, time)

VAR

state: {chilldown-state, slow-fill, fast-fill, topping-state,

replenish-state, revert-state, stop-flow, drain};

chilldown: {open, closed};

transfer-line: {open, closed};

transfer-line-vent: {open, closed};

main-fill: {open, closed};

outboard-fill-drain: {open, closed};

external-tank-vent: {open, closed};

main-fill-redu: {open, closed};

auxiliary-fill: {open, closed};

inboard-fill-drain: {open, closed};

topping: {open, closed};

high-point-bleed: {open, closed};

fill-disconnect: {open, closed};

recirculation-disconnect: {open, closed};

pre-valve: {open, closed};

recirculation: {open, closed};

replenish: {open, closed};

ASSIGN

init(state) := chilldown-state;

init(chilldown) := closed;

init(transfer-line) := closed;

init(transfer-line-vent) := open;

init(main-fill) := closed;

init(outboard-fill-drain) := closed;

init(external-tank-vent) := closed;

init(main-fill-redu) := closed;

init(auxiliary-fill) := closed;

init(inboard-fill-drain) := open;

init(topping) := closed;

init(high-point-bleed) := closed;

init(fill-disconnect) := open;

init(recirculation-disconnect) := open;
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init(pre-valve) := open;

init(recirculation) := closed;

init(replenish) := closed;

next(state) :=

case

(state = chilldown-state) & (pressure = forty-three) :

slow-fill;

(state = slow-fill) & (volume = two) : fast-fill;

(state = fast-fill) & (volume = ninety-eight) :

topping-state;

(state = topping-state) & (volume = one-hundred) :

replenish-state;

1: state;

esac;

next(chilldown) :=

case

(time = medium) &

(state = chilldown-state): open;

(state = chilldown-state) & (pressure = forty-three):

closed;

(state = slow-fill) & (chilldown = closed): open;

1 : chilldown;

esac;

next(transfer-line) :=

case

(time = medium & state = chilldown-state) |

(volume = two & state = slow-fill): open;

(time = long & state = chilldown-state) |

(volume = ninety-eight & state = fast-fill): closed;

1 : transfer-line;

esac;

next(transfer-line-vent) :=

case

(time = short & state = chilldown-state): closed;

1 : transfer-line-vent;

esac;

next(main-fill) :=

case
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(time = medium) & (state = chilldown-state): open;

(volume = one-hundred) & (state = topping-state): closed;

1 : main-fill;

esac;

next(outboard-fill-drain) :=

case

(time = short) & (state = chilldown-state): open;

1 : outboard-fill-drain;

esac;

next(external-tank-vent) :=

case

(time = short & state = chilldown-state) |

(volume = ninety-eight & state = fast-fill): open;

(pressure = forty-three) & (state = chilldown): closed;

--valve position is unstable in the following statements

--is substate 2 of slow-fill dependent on the chilldown

--and topping valves?

(state = slow-fill) & (chilldown = open) &

(topping = open): {open, closed};

(state = fast-fill): {open, closed};

--end of nondeterminism

1: external-tank-vent;

esac;

next(main-fill-redu) :=

case

(pre-valve = closed) & (state = fast-fill): open;

(volume = one-hundred) & (state = topping-state) : closed;

1: main-fill-redu;

esac;

next(auxiliary-fill) :=

case

--This valve has no transitions listed

1: auxiliary-fill;

esac;

next(inboard-fill-drain) :=

case

(pre-valve = closed) & (state = fast-fill) : closed;

1: inboard-fill-drain;
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esac;

next(topping) :=

case

(chilldown = open) & (state = slow-fill): open;

1: topping;

esac;

next(high-point-bleed) :=

case

(state = slow-fill) & (chilldown = open) &

(topping = open) : open;

1: high-point-bleed;

esac;

next(fill-disconnect) :=

case

--This valve has no transitions listed

1: fill-disconnect;

esac;

next(recirculation-disconnect) :=

case

--This valve has no transitions listed

1: recirculation-disconnect;

esac;

next(pre-valve) :=

case

(state = fast-fill) & (recirculation = open): closed;

1: pre-valve;

esac;

next(recirculation) :=

case

(state = fast-fill): open;

1: recirculation;

esac;

next(replenish) :=

case

(state = fast-fill) & (pre-valve = closed): open;

1: replenish;
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esac;

MODULE volume(system-state)

VAR

state : {zero, two, ninety-eight, one-hundred};

ASSIGN

init(state) := zero;

next(state) :=

case

--Either stay in the same state or change states

--spontaneously based on state of system

(system-state = slow-fill) & (state = zero): {zero, two};

(system-state = fast-fill) & (state = two): {two, ninety-

eight};

(system-state = topping-state) & (state = ninety-eight):

{ninety-eight, one-hundred};

1 : state;

esac;

FAIRNESS

!(state = zero)

FAIRNESS

!(state = two)

FAIRNESS

!(state = ninety-eight)

MODULE time(system-state, trans-line-vent, chilldown-valve,

trans-line)

VAR

state : {initial, short, medium, long};

ASSIGN

init(state) := initial;

next(state) :=

case

--Either stay in the same state or change states

--spontaneously based on state of certain valves

(trans-line-vent = open) & (state = initial):

{initial, short};

(chilldown-valve = closed) & (state = short):
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{short, medium};

(trans-line = open) & (state = medium): {medium, long};

1 : state;

esac;

FAIRNESS

!(state = initial)

FAIRNESS

!(state = short)

FAIRNESS

!(state = medium)

MODULE pressure(system-state, chilldown-valve)

VAR

state : {initial, forty-three};

ASSIGN

init(state) := initial;

next(state) :=

case

--Either stay in the same state or change states

--spontaneously based on state of certain valves and

--the system state

(chilldown-valve = closed) &

(system-state = chilldown-state): {initial, forty-three};

--Not quite true. Pressure may go up or down in later

--states, but may not be important to model.

1 : state;

esac;

MODULE main

VAR

LH2: system(vol-gauge.state, press-gauge.state,

timer.state);

vol-gauge: volume(LH2.state);

timer: time(LH2.state, LH2.transfer-line-vent,

LH2.chilldown, LH2.transfer-line);

press-gauge: pressure (LH2.state, LH2.chilldown);

--Sanity specs here

SPEC
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--Make sure pressure changes state

AF(press-gauge.state = initial &

AF(press-gauge.state = forty-three))

SPEC

--Make sure time progresses

AF(timer.state = initial & AF(timer.state = medium &

AF(timer.state = long)))

SPEC

--Make sure volume progresses

AF(vol-gauge.state = zero & AF(vol-gauge.state = two &

AF(vol-gauge.state = ninety-eight &

AF(vol-gauge.state = one-hundred))))

--Important specs here

SPEC

--ET is filled to the 100% level during topping

AF(LH2.state = topping-state ->

AF(vol-gauge.state = one-hundred))

SPEC

--Level of the LH2 is maintained at 100% during Replenish

AF(LH2.state = replenish-state &

AF(vol-gauge.state = one-hundred))
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Appendix B: SCR Model

Name Base Type Units Legal Values
yPressure Float Psia [0.0, 43.7]
yTime Integer second [0, 405]
yValve Enumerated N/A open, closed
yVolume Integer % [0, 100]

Table 1: Type Dictionary

Name Modes Initial Mode Table? Comment
smSystem sChilldown, sSlowFill,

sFastFill, sTopping,
sReplenish

sChilldown Yes models the LH2 system

Table 2: Mode Class Dictionary

Name Type Initial Value Accuracy Comment
mPressureState yPressure 0.0 N/A Tried modeling this as another mode

class, but had trouble with crossing
modes. Does this start at 0?

mTimeState yTime 0 N/A Tried previously as a mode class
mVolumeState yVolume 0 N/A Tried previously as a mode class

Table 3: Monitored Variable Dictionary
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Name Type Initial Value Accuracy
cAuxiliaryFill yValve closed N/A
cChilldown yValve closed N/A
cExternalTankVent yValve closed N/A
cFillDisconnect yValve open N/A
cHighPointBleed yValve closed N/A
cInboardFillDrain yValve open N/A
cMainFill yValve closed N/A
cMainFillRedu yValve closed N/A
cOutboardFillDrain yValve closed N/A
cPreValve yValve open N/A
cRecirculationDisconnect yValve open N/A
cRecirculationPreValve yValve closed N/A
cReplenish yValve closed N/A
cTopping yValve closed N/A
cTransferLine yValve closed N/A
cTransferLineVent yValve open N/A

Table 4: Controlled Variable Dictionary

Source Mode Events Destination Mode
sChilldown @T(mPressureState = 43.7) sSlowFill
sSlowFill @T(mVolumeState = 2) sFastFill
sFastFill @T(mVolumeState = 98) sTopping
sTopping @T(mVolumeState = 100) sReplenish

Table 5: Mode Transition Table for smSystem

Modes Events
sChilldown @T(mTimeState = 60)

closed

Table 6: Event Table for cTransferLineVent
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Modes Events
sChilldown @T(mTimeState = 165) @T(mTimeState = 405)
sSlowFill @T(mVolumeState = 2) NEVER
sFastFill NEVER @T(mVolumeState = 98)

open closed

Table 7: Event Table for cTransferLine

Modes Events
sSlowFill @T(true) WHEN (cChilldown = open)

open

Table 8: Event Table for cTopping

Modes Events
sFastFill @T(true) WHEN (cPreValve = closed)

open

Table 9: Event Table for cReplenish

Modes Events
sFastFill @T(INMODE)

open

Table 10: Event Table for cRecirculationPreValve

Modes Events
sFastFill @T(true) WHEN (cRecirculationPreValve = open)

closed

Table 11: Event Table for cPreValve

Modes Events
sChilldown @T(mTimeState = 60)

open

Table 12: Event Table for cOutboardFillDrain
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Modes Events
sFastFill @T(true) WHEN (cPreValve = closed) NEVER
sTopping NEVER @T(mVolumeState = 100)

open closed

Table 13: Event Table for cMainFillRedu

Modes Events
sChilldown @T(mTimeState = 165) NEVER
sTopping NEVER @T(mVolumeState = 100)

open closed

Table 14: Event Table for cMainFill

Modes Events
sFastFill @T(true) WHEN (cPreValve = closed)

Closed

Table 15: Event Table for cInboardFillDrain

Modes Events
sSlowFill @T(true) WHEN (cChilldown = open AND cTopping = open)

open

Table 16: Event Table for cHighPointBleed

Modes Events
sChilldown @T(mTimeState = 60) @T(mPressureState = 43.7)
sFastFill @T(mVolumeState = 98) NEVER

open closed

Table 17: Event Table for cExternalTankVent
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Modes Events
sChilldown @T(mTimeState = 165) @T(mPressureState = 43.7)
sSlowFill @T(true) WHEN (cChilldown =

closed)
NEVER

open closed

Table 18: Event Table for cChilldown
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Appendix C: Time Summary

Task Time (min) Time (hrs) % Total
Reading NASA intern’s report 43 0.7 1.9
Searching and reading literature 283 4.7 11.9
Planning 118 2 5.0
Setting up the computer (and other overhead) 90 1.5 3.8
Creating statecharts 73 1.2 3.1
Creating SMV model 133 2.2 5.6
Creating SCR model 189 3.2 7.8
Learning SCR 95 1.6 4.0
Writing report 338 5.6 14.3
Attending meetings and presentations 662 11 28
Preparing and giving final presentation 315 5.3 13.3
Using spin 30 0.5 1.3
Total 2369 39.5 100
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