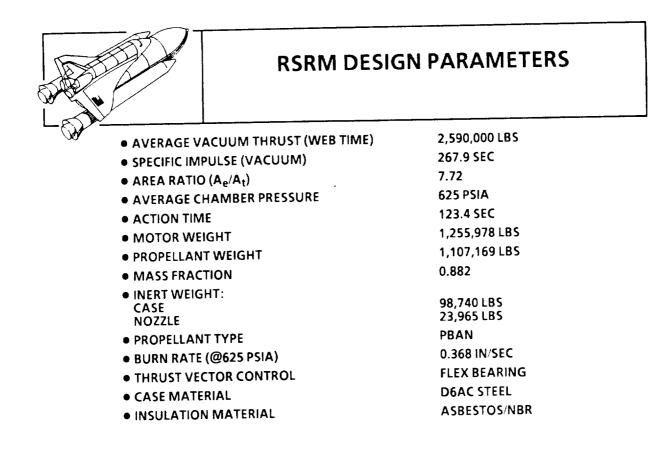
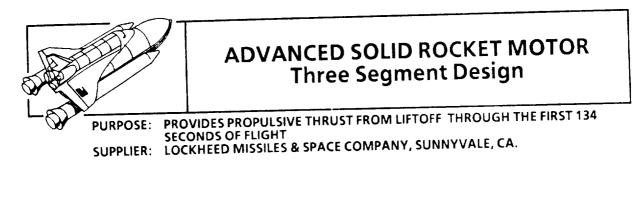
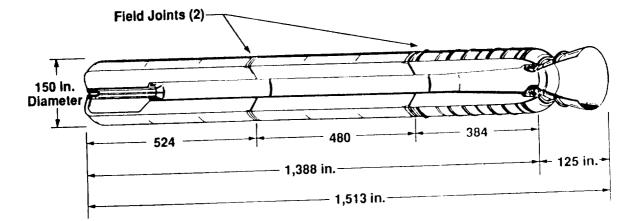
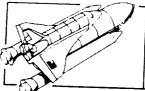
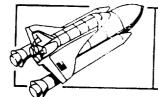

N91-28200



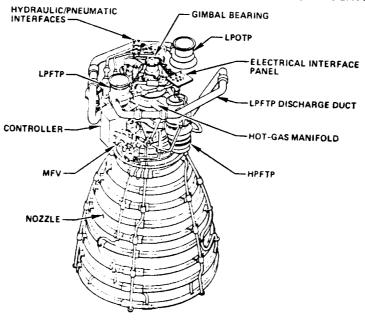

ž

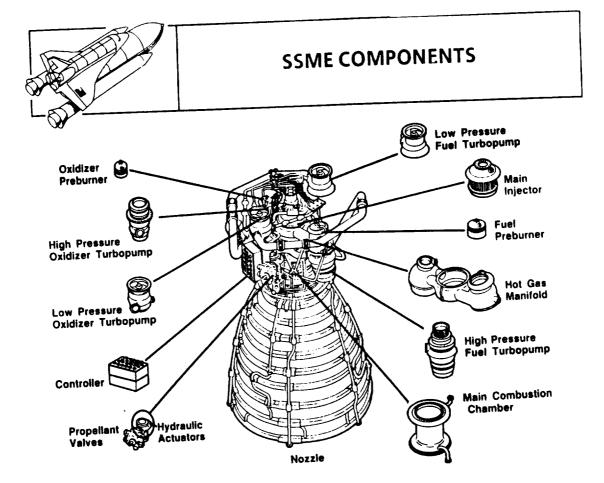


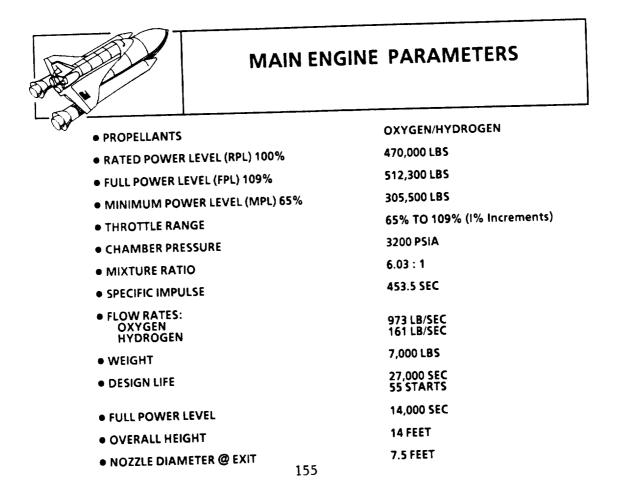


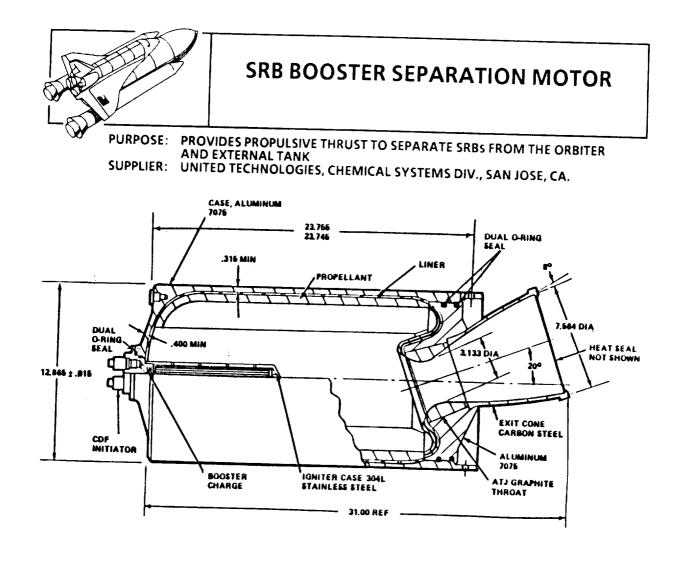


ASRM DESIGN PARAMETERS

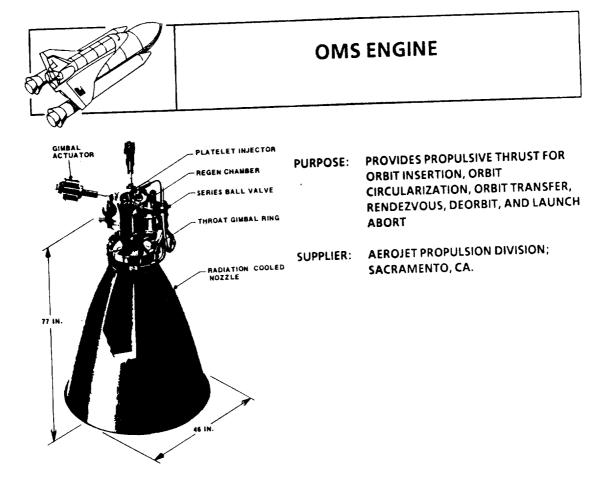

• AVERAGE VACUUM THRUST (WEB TIME)	624,031 LBS
SPECIFIC IMPULSE (VACUUM)	70.3 SEC
● AREA RATIO (A _e /A _t)	7.54
AVERAGE CHAMBER PRESSURE	633 PSIA
ACTION TIME	134.1 SEC
MOTOR WEIGHT	1,345,807 LBS
PROPELLANT WEIGHT	1,205,807 LBS
MASS FRACTION	8.96
INERT WEIGHT: CASE NOZZLE	97,419 LBS 18,947 LBS
• PROPELLANT TYPE	НТРВ
• BURN RATE (@625 PSIA)	0.345 IN/SEC
THRUST VECTOR CONTROL	FLEX BEARING
• CASE MATERIAL	9 Ni-4 Co-0.3C
INSULATION MATERIAL	KEVLAR-GLASS-EPDM

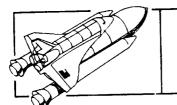


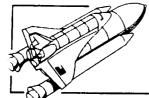

SPACE SHUTTLE MAIN ENGINE


PURPOSE: SUPPLIER:

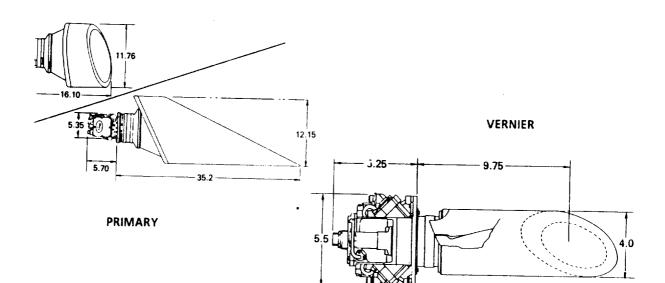
PROVIDE PROPULSIVE THRUST FROM LIFTOFF TO ORBIT ROCKWELL INTERNATIONAL ROCKETDYNE DIVISION, CANOGA PARK, CA.

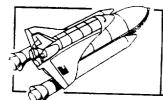





•	AVERAGE VACUUM THRUST	20,050 LBS
•	AREA RATIO	5.8
•	AVERAGE CHAMBER PRESSURE	2221 PSIA
	ACTION TIME	0.805 SEC
	TOTAL IMPULSE	15,000 LB - SEC
	MOTOR WEIGHT	167 LBS
	PROPELLANT TYPE	НТРВ
•	CASE MATERIAL	7075 AL

OMS ENGINE DESIGN PARAMETERS

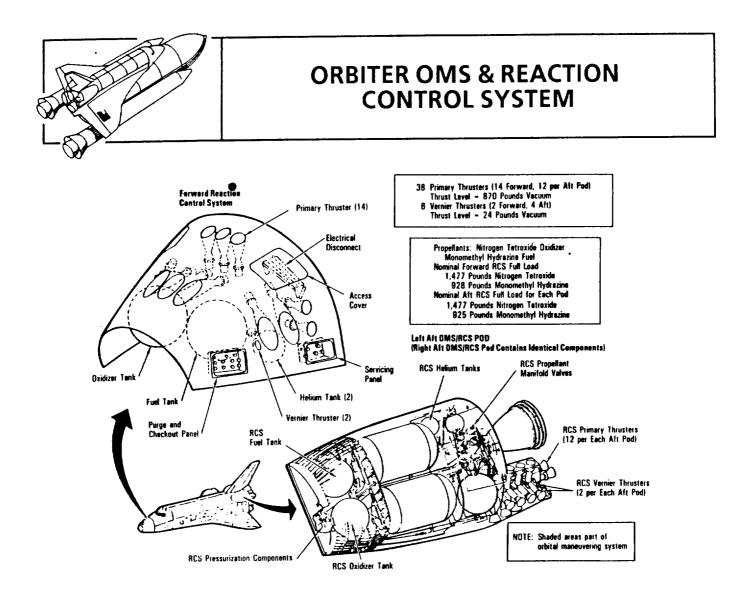

		MMH/N204
٠	PROPELLANTS	• ·
٠	THRUST (VACUUM)	6,000 LBS
•	NOMINAL SPECIFIC IMPULS	E 313.2 SEC
•	CHAMBER PRESSURE	125 PSIA
	MIXTURE RATIO	1.65
•	EXPANSION RATIO	55:1
•	FLOW RATES	
	FUEL	11.93 LB/SEC
	OXIDIZER	7.23 LB/SEC
•	DRY WEIGHT	297 LBS
•	LIFE	100 MISSIONS
•		1000 STARTS
		15 HOURS CUM. FIRING
•	GIMBAL CAPABILITY	
	PITCH	± 6 DEG
	YAW	± 7 DEG
	I M WW	157

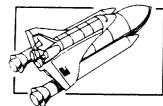


RCS PRIMARY AND VERNIER THRUSTERS

PROVIDE PROPULSIVE THRUST FOR ORBIT STABILIZATION AND ORIENTATION PURPOSE: MANEUVERS SUPPLIER:

THE MARQUARDT COMPANY, VAN NUYS, CA.





RCS PRIMARY & VERNIER THRUSTER PARAMETERS

PRIMARY

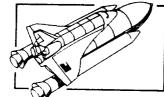
	PRIMARY	VERNIER
PROPELLANTS	MMH/N ₂ O ₄	MMH/N2O4
NOMINAL VACUUM THRUST	870 LBS	24 LBS
CHAMBER PRESSURE	152 PSIA	110 PSIA
MIXTURE RATIO	1.6	1.65
SPECIFIC IMPULSE	280 SEC (22:1 AREA RATIO)	265 SEC
INLET PRESSURE	238 PSIA	246 PSIA
 RATIO (A_e/A_t) 	22:1 TO 30:1	
• LIFE		20.7:1
MISSIONS	100	CHAMBER LIMITED
CYCLES	20,000	
TOTAL FIRING DURATION	12,800 SEC	330,000
• WEIGHT		125,000
	16 LBS	9.4 LBS
CONSTRUCTION	COLUMBIUM/TITANIUM	COLUMBIUM/TITANIUM

SPACE SHUTTLE PROPULSION ISSUES

<u>RSRM</u>

- IGNITER SEAL ANOMALIES
- CASE STIFFENER SEGMENT ATTRITION
- IMPROVED O-RING MATERIAL
- ASBESTOS-FREE INSULATION
- FORWARD SEGMENT GRAIN REDESIGN

<u>SSME</u>


- HIGH PRESSURE TURBOPUMP BEARINGS
- HEAT EXCHANGER
- CONTROLLER OBSOLESCENCE
- UNINSPECTABLE WELDS

<u>SRB</u>

- AFT SKIRT FACTOR OF SAFETY
- OBSOLESCENCE OF ELECTRONIC COMPONENTS
- RECOVERY SYSTEM MARGINS
- DEBRIS CONTAINMENT SYSTEM

RCS THRUSTERS

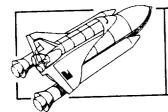
- COMBUSTION INSTABILITY
- CONTAMINATION

PROPULSION SYSTEM IMPROVEMENTS IN WORK

<u>RSRM</u>

IGNITER-TO-CASE JOINT REDESIGN

<u>SRB</u>


- ENHANCED MULTIPLEXER/DEMULTIPLEXER
- DEBRIS CONTAINMENT SYSTEM FRANGIBLE LINK
- MAIN PARACHUTE RIPSTOP
- HDP/AFT SKIRT BIAS

SSME

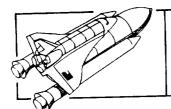
- PHASE II + POWERHEAD
- HPOTP/HPFTP LIFE IMPROVEMENTS
- ALTERNATE TURBOPUMP DEVELOPMENT
- BLOCK II CONTROLLER
- SINGLE COIL HEAT EXCHANGER

ORBITER

- IMPROVED AUXILIARY POWER UNIT
- IMPROVED AUXILIARY POWER UNIT CONTROLLER
- IMPROVED MULTIPLEXER/DEMULTIPLEXER

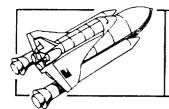
ASA PROGRAM DEFINITION

- OBJECTIVE: EXTEND THE LIFE OF THE SPACE SHUTTLE PROGRAM TO THE YEAR 2020
- BENEFITS: PLANS FOR OBSOLESENCE, IMPLEMENTS CURRENT TECHNOLOGY


INCREASES SAFETY MARGINS

INCREASES MISSION SUCCESS PROBABILITY

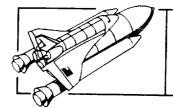
MAINTAINS A HIGH LEVEL OF TECHNICAL EXCELLENCE


IMPROVES VEHICLE TURNAROUND AND OPERATIONS COSTS

DEVELOPS AND QUALIFIES ALTERNATE SOURCES

ASA PROGRAM SELECTION METHODOLOGY

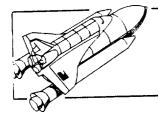
PROBLEM AREAS IDENTIFIED CANDIDATES SUBMITTED VIABLE CANDIDATES CATEGORIZED FEASIBILITY STUDIES BEGUN ON SOME CANDIDATES CANDIDATES BEING PRIORITIZED


PROGRAM PRIORITIES ESTABLISHED

PRIMARY: ASSURANCE OF SYSTEM SUPPORTABILITY AND

SAFETY MARGIN IMPROVEMENT

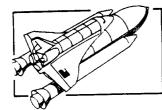
SECONDARY: IMPROVEMENTS IN SYSTEM RELIABILITY,


ECONOMY AND PERFORMANCE

ASA PROGRAM CANDIDATES

TITLE COCKPIT DISPLAYS AND CONTROLS EPD&C SUBSYSTEM REDESIGN CONTROL SYSTEM REDESIGN INTEGRATED COMMUNICATIONS AFT SKIRT REDESIGN INTEGRATED OMS/RCS REDESIGNED STIFFENER RING IGNITER JOINT IMPROVEMENT INTEGRATED NAVIGATION SYSTEM PROCESS CHEMICALS LONG-LIFE FUEL CELLS COMPOSITE STRUCTURES POWERHEAD UPGRADE ENHANCED CONTROLLER LIGHTWEIGHT STRUCTURES INTEGRATED THERMAL CONTROL	
LIGHTWEIGHT STRUCTURES INTEGRATED THERMAL CONTROL FWD SEGMENT MANDREL REDESIGN ALUMINUM LITHIUM ALLOYS ELECTROMECHANICAL ACTUATORS	

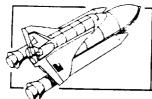
PROJECT ORBITER ORBITER SRB ORBITER SRB ORBITER RSRM RSRM ORBITER SSME ORBITER SRB SSME SSME ORIBTER ORBITER RSRM ET **ORB/SSME**



ASA PROGRAM CATEGORIES

A. HIGHEST PRIORITY

NEAR TERM SUPPORTABILITY ISSUES SAFETY MARGIN INCREASES


- B. HIGH PRIORITY-SYSTEMS IMPROVEMENTS WITH IMPLEMENTATION OPPORTUNITIES
- C. OTHER IMPROVEMENTS WITH INDEFINITE SCHEDULE DRIVERS
- D. IMPROVEMENTS WITH NO SCHEDULE DRIVER AND/OR HIGH PROGRAM RISK

ASA PROGRAM

PROPULSION PROGRAM CANDIDATES

SRB CONTROL SYSTEM REDESIGN SSME ADVANCED FABRICATION AFT SKIRT REDESIGN INTEGRATED OMS/RCS

ASA PROGRAM SRB CONTROL SYSTEM REDSIGN

DESCRIPTION:

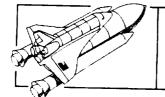
REPLACE OBSOLETE ELECTRONIC CONTROL SYSTEMS (FORWARD & AFT IEA'S) WITH SINGLE INTEGRADED MICROPROCESSOR SYSTEM

ADD SOLID PROPELLANT APU GAS GENERATOR TO REPLACE HYDRAZINE SYSTEM

ADD NEW LASER INITIATED ORDNANCE TO REPLACE CURRENT SYSTEM

BENEFITS:

SMART INTEGRATED ELECTRONICS ASSEMBLIES (IEA) AND RANGE SAFETY DISTRIBUTER (RSD) CONTROLLERS AND LASER ORDNANCE CONTROLS ELIMINATES COMPONENTS, FAILURE MODES AND REDUCES COSTS


EXTERNALLY PROGRAMMABLE MICROPROCESSOR SYSTEM

HIGHER LAUNCH PROBABILITY FROM REDUCED WING LOADS DUE TO ELIMINATION OF AFT IEA PROTRUBERANCE

FIBER OPTIC DATA BUSES FOR BETTER COMMUNICATIONS

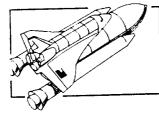
ELIMINATE ORDNANCE SYSTEM EMI CONCERNS WITH FIBER OPTIC LINES

ELIMINATE HYDRAZINE CONCERNS

ASA PROGRAM SRB AFT SKIRT REDESIGN

DESCRIPTION:

NEW AFT SKIRT, DESIGN TO:


- INCREASE STRUCTURAL FACTOR OF SAFETY (1.28 TO 1.4)
- ENHANCE HOLDDOWN MECHANISM
- ADD INTEGRAL STIFFENER RINGS TO MINIMIZE WATER IMPACT DAMAGE

BENEFITS:

SAFETY MARGIN ENHANCEMENT

ELIMINATE STUD HANGUP AND LAUNCH LOADS

REDUCTION IN WATER IMPACT DAMAGE

ASA PROGRAM SSME ADVANCED FABRICATION

DESCRIPTION:

MAJOR REDESIGNS EMPLOYING ADVANCED FABRICATION AND CASTING TECHNIQUES TO RESOLVE MAJOR ISSUES:

- FINE GRAINED INVESTMENT CASTINGS
- VACUUM PLASMA SPRAY FOR MAIN COMBUSTION CHAMBER


BENEFITS:

IMPROVE THE INSPECTABILITY OF CRITICAL WELDS

ELIMINATE 3000 UNINSPECTABLE WELDS

REDUCE FABRICATION COSTS OF MAJOR COMPONENTS

INCREASE DESIGN PERFORMANCE MARGIN

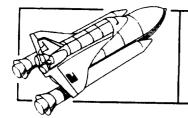
ASA PROGRAM

INTEGRATED OMS/RCS

DESCRIPTION

REDESIGN SEPARATE OMS/RCS SYSTEMS INTO ONE INTEGRATED SYSTEM ELIMINATE RCS TANKS/PRESSURIZATION SYSTEM ALLOW OMS TANK PLUS ENTRY SUMP USE FOR BOTH OMS AND RCS PROPELLANT IMPROVE ABORT DUMP CAPABILITY ALLOW LANDING WITH INCREASED RESIDUAL PROPELLANT INCREASE CHECKOUT/MAINTENANCE CAPABILITY WITH POD ON ORBITER

BENEFITS


IMPROVE SAFETY MARGIN

REDUCE COST

SIMPLIFIED MISSION PLANNING

350 LB DRY WEIGHT REDUCTION

RETAIN CONTRACTOR/SUBCONTRACTOR DESIGN/PRODUCTION SKILLS

ASA PROGRAM SUMMARY

THE SHUTTLE LIFE CYCLE CAN BE EXTENDED FROM 20 TO 40 YEARS SIGNIFICANT BUDGET SAVINGS CAN BE REALIZED OVER A NEW SHUTTLE II SUBSYSTEM MANDATORY UPGRADES FOR OBSOLESCENCE, SAFETY MARGIN, AND PERFORMANCE IS REQUIRED TO EXTEND THE SHUTTLE LIFE UPGRADE PROGRAMS WILL HAVE A DEDICATED MANAGEMENT SYSTEM UPGRADES WILL BE TIMED FOR EFFICIENT IMPLEMENTATION

PRESENTATION 1.2.3

UPPER STAGES/PROPULSION